The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

Abstract We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1 bar hydrogen pressure and 340 K, is equal to 670 ± 50 μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67 J/(K mol)) corresponds to a reversible heat release of 22 kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1 ± 5 J/(K mol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6 ± 2 kJ/mol at 340 K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile.

[1]  N. Krstajić,et al.  Specificity of the UPD of H to the structure of highly dispersed Pt on carbon support , 2007 .

[2]  G. Qiu,et al.  The electrochemical Peltier heat of the standard hydrogen electrode reaction , 2008 .

[3]  J. Oishi,et al.  Single electrode peltier heat of a hydrogen electrode in H2SO4 and NaOH solutions , 1987 .

[4]  G. Maranzana,et al.  Thermal Effect on Water Transport in Proton Exchange Membrane Fuel Cell , 2012 .

[5]  Zhiyu Jiang,et al.  Determination of the entropy change of the electrode reaction by an ac electrochemical–thermal method , 1999 .

[6]  S. Kjelstrup,et al.  Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell , 2010 .

[7]  A. K. Tangirala,et al.  Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system , 2008 .

[8]  Shigeo Shibata,et al.  The electrochemical Peltier heat for the adsorption and desorption of hydrogen on a platinized platinum electrode in sulfuric acid solution , 1985 .

[9]  Sarit K. Das,et al.  Heat and Mass Transport in Proton Exchange Membrane Fuel Cells—A Review , 2009 .

[10]  D. Maillet,et al.  Heat sources in proton exchange membrane (PEM) fuel cells , 2009 .

[11]  S. Kandlikar,et al.  A critical review of cooling techniques in proton exchange membrane fuel cell stacks , 2012 .

[12]  S. K. Ratkje,et al.  Irreversible Thermodynamics: Theory and Applications , 1989 .

[13]  Jon G. Pharoah,et al.  On the Determination of PEM Fuel Cell Catalyst Layer Resistance from Impedance Measurement in H2/N2 Cells , 2011, ECS Transactions.

[14]  S. Kjelstrup,et al.  A Solid State Thermoelectric Power Generator Prototype Designed to Recover Radiant Waste Heat , 2012 .

[15]  K. Karan,et al.  On the Determination of PEM Fuel Cell Catalyst Layer Resistance from Impedance Measurement in H2/N2 Cells , 2012 .

[16]  Markku J. Lampinen,et al.  Analysis of Free Energy and Entropy Changes for Half‐Cell Reactions , 1993 .

[17]  S. K. Ratkje,et al.  Thermoelectric power relevant for the solid-polymer-electrolyte fuel cell , 1995 .

[18]  E. A. Guggenheim The Conceptions of Electrical Potential Difference between Two Phases and the Individual Activities of Ions , 1928 .

[19]  S. Kjelstrup,et al.  Calculation of reversible electrode heats in the proton exchange membrane fuel cell from calorimetric measurements , 2011 .

[20]  D. Bedeaux,et al.  A Gerischer phase element in the impedance diagram of the polymer electrolyte membrane fuel cell anode. , 2005, The journal of physical chemistry. B.

[21]  Nathan P. Siegel,et al.  A two-dimensional computational model of a PEMFC with liquid water transport , 2004 .

[22]  S. Kjelstrup,et al.  Peltier effects in electrode carbon , 1998 .

[23]  D. Wilkinson,et al.  Non-isothermal cell potentials and evaluation of entropies of ions and of activation for single electrode processes in non-aqueous media , 1993 .

[24]  G. Broers,et al.  Single Electrode Heat Effects I . Peltier Entropies of Gas Electrodes in Carbonate Paste Electrolytes , 1977 .

[25]  Jon G. Pharoah,et al.  Effect of Relative Humidity on Electrochemical Active Area and Impedance Response of PEM Fuel Cell , 2008 .

[26]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[27]  Signe Kjelstrup,et al.  Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell , 2004 .

[28]  A calorimetric analysis of a polymer electrolyte fuel cell and the production of H2O2 at the cathode , 2010 .

[29]  D. Bedeaux,et al.  Non-equilibrium Thermodynamics of Heterogeneous Systems , 2008, Series on Advances in Statistical Mechanics.

[30]  Chao-Yang Wang,et al.  A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells , 2006 .

[31]  S. Kjelstrup,et al.  Local and total entropy production and heat and water fluxes in a one-dimensional polymer electrolyte fuel cell. , 2005, The journal of physical chemistry. B.

[32]  T. Findlay,et al.  SI Chemical Data , 1971 .

[33]  Ville Saarinen,et al.  Characterization of membrane electrode assembly with hydrogen-hydrogen cell and ac-impedance spectroscopy - Part I. Experimental , 2006 .

[34]  Rockwood Absolute half-cell entropy. , 1987, Physical review. A, General physics.

[35]  S. Kjelstrup,et al.  Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO , 2007 .

[36]  Yun Wang,et al.  Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers , 2013 .

[37]  Jon G. Pharoah,et al.  On the temperature distribution in polymer electrolyte fuel cells , 2010 .

[38]  S. Kjelstrup,et al.  Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers , 2010 .

[39]  M. Godino,et al.  Water and methanol transport in Nafion membranes with different cationic forms 1. Alkali monovalent cations , 2006 .

[40]  Bastian Schaar,et al.  A “proton pump” concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells , 2009 .

[41]  Chaitanya J. Bapat,et al.  Anisotropic Heat Conduction Effects in Proton-Exchange Membrane Fuel Cells , 2007 .