From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors

[1]  L. Zhi,et al.  Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors , 2015 .

[2]  A. Bhaumik,et al.  Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications , 2014 .

[3]  Jun Yan,et al.  Nitrogen‐Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose , 2014 .

[4]  Q. Wang,et al.  Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors , 2014 .

[5]  S. Ogale,et al.  3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation , 2014 .

[6]  R. Che,et al.  One‐Step Fabrication of Ultrathin Porous Nickel Hydroxide‐Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance , 2013 .

[7]  Jun Yan,et al.  Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors , 2013 .

[8]  Long Hao,et al.  Carbonaceous Electrode Materials for Supercapacitors , 2013, Advanced materials.

[9]  Yunhui Huang,et al.  Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors , 2013 .

[10]  L. Dai,et al.  Carbon nanomaterials for high- performance supercapacitors , 2013 .

[11]  Jiaqi Huang,et al.  Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical cap , 2013 .

[12]  Hailiang Wang,et al.  Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. , 2013, Chemical Society reviews.

[13]  Xin Li,et al.  Supercapacitors based on nanostructured carbon , 2013 .

[14]  Lan Jiang,et al.  Highly Compression‐Tolerant Supercapacitor Based on Polypyrrole‐mediated Graphene Foam Electrodes , 2013, Advanced materials.

[15]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[16]  Hongcai Gao,et al.  High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. , 2012, ACS applied materials & interfaces.

[17]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[18]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[19]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[20]  Qiang Zhang,et al.  A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors , 2010, Advanced materials.

[21]  L. Kong,et al.  Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon , 2010 .

[22]  M. Yoshio,et al.  Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors , 2010 .

[23]  R. Holze,et al.  A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2 , 2009 .

[24]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[25]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[26]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[27]  M. Čadek,et al.  Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds , 2009 .

[28]  Feng Li,et al.  Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor , 2008 .

[29]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[30]  Jingwei Sun,et al.  Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution , 2008 .

[31]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[32]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[33]  Anbao Yuan,et al.  A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte , 2006 .

[34]  P. Baglioni,et al.  Conservation of acid waterlogged shipwrecks: nanotechnologies for de-acidification , 2006 .

[35]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[36]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[37]  Yongyao Xia,et al.  An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes , 2005 .

[38]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[39]  Zhuangjun Fan,et al.  Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors , 2015 .

[40]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[41]  T. Kudo,et al.  Electrochemical Study of High Electrochemical Double Layer Capacitance of Ordered Porous Carbons with Both Meso/Macropores and Micropores , 2007 .