A molecular orbital study of cyclodextrin (cyclomalto-oligosaccharide) inclusion complexes. III, dipole moments of cyclodextrins in various types of inclusion complex

Abstract Large values (10–20 D) of the dipole moments were calculated for cyclomalto-hexaose, -heptaose, and -octaose (αCD, βCD, and γCD) and also two types of methylated CD by means of the CNDO/2 MO method, using the X-ray structures of various inclusion complexes. The relative strengths of the dipole moments were αCD

[1]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. VI. The Crystal Structure of α-CycIodextrin–m-Nitrophenol (1 : 2) Complex , 1978 .

[2]  M. L. Bender,et al.  Acceleration of phenyl ester cleavage by cycloamyloses. A model for enzymic specificity , 1967 .

[3]  R. Bergeron,et al.  The molecular disposition of sodium p-nitrophenolate in the cavities of cycloheptaamylose and cyclohexaamylose in solution , 1976 .

[4]  W. Saenger,et al.  Topography of cyclodextrin inclusion complexes. 12. Structural chemistry of linear .alpha.-cyclodextrin-polyiodide complexes. X-ray crystal structures of (.alpha.-cyclodextrin)2.LiI3.I2.8H2O and (.alpha.-cyclodextrin)2.Cd0.5).I5.27H2O. Models for the blue amylose-iodine complex , 1980 .

[5]  Wolfram Saenger,et al.  Cyclodextrin Inclusion Compounds in Research and Industry , 1980 .

[6]  W. Saenger,et al.  Crystal and molecular structures of cyclomaltoheptaose inclusion complexes with HI and with methanol , 1982 .

[7]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. X. Crystal Structure of α-Cyclodextrin-Benzaldehyde (1 : 1) Complex Hexahyderate , 1981 .

[8]  W. Saenger,et al.  X‐Ray Structure Analysis of the α‐Cyclodextrin‐Krypton Inclusion Complex: A Noble Gas in an Organic Matrix , 1974 .

[9]  W. Saenger,et al.  Topography of cyclodextrin inclusion complexes. 15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. Four- and six-membered circular hydrogen bonds , 1981 .

[10]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XI. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–p-Iodoaniline Monohydrate , 1982 .

[11]  W. Saenger,et al.  Topography of cyclodextrin inclusion complexes. VI. The crystal and molecular structure of α-cyclodextrin-p-iodoaniline trihydrate , 1976 .

[12]  W. Saenger,et al.  Topography of cyclodextrin inclusion complexes. XVI. Cyclic system of hydrogen bonds: structure of α-cyclodextrin hexahydrate, form (II): comparison with form (I) , 1982 .

[13]  F. Cramer,et al.  INCLUSION COMPOUNDS. XVII. CATALYSIS OF DECARBOXYLATION BY CYCLODEXTRINS. A MODEL REACTION FOR THE MECHANISM OF ENZYMES. , 1965, Journal of the American Chemical Society.

[14]  Iwao Tabushi,et al.  Cyclodextrin catalysis as a model for enzyme action , 1982 .

[15]  K. Harata The Structure of the Cyclodextrin Complex. VIII. Crystal Structures of α-Cyclodextrin Complexes with 2-Pyrrolidone and N,N-Dimethylformamide , 1979 .

[16]  Y. Inoue,et al.  A molecular orbital study of cyclodextrin inclusion complexes. II: The structural analysis of α-cyclodextrin inclusion complex with m-nitrophenol in aqueous solution based on the quantum-chemical solvation theory , 1989 .

[17]  K. Harata The Structure of the Cyclodextrin Complex. I. The Crystal and Molecular Structure of the α-Cyclodextrin– p-Iodoaniline Complex , 1975 .

[18]  W. Saenger,et al.  Topography of cyclodextrin inclusion complexes. Part 23. Neutron diffraction study of the hydrogen bonding in .beta.-cyclodextrin undecahydrate at 120 K: from dynamic flip-flops to static homodromic chains , 1986 .

[19]  J. Fayós,et al.  Topography of cyclodextrin inclusion complexes. IV. Crystal and molecular structure of the cyclohexaamylose–1-propanol–4.8 hydrate complex , 1974 .

[20]  K. Harata The Structure of the Cyclodextrin Complex. V. Crystal Structures of α-Cyclodextrin Complexes with p-Nitrophenol and p-Hydroxybenzoic Acid , 1977 .

[21]  S. Jain,et al.  Synthesis of 2-Aminonaphthalene-1-thiol and Its Conversion into 8-Nitro-7H-benzo[c]phenothiazine , 1976 .

[22]  A. Orstan,et al.  Investigation of the .beta.-cyclodextrin-indole inclusion complex by absorption and fluorescence spectroscopies , 1987 .

[23]  K. Harata The Structure of the Cyclodextrin Complex. XII. Crystal Structure of α-Cyclodextrin-1-Phenylethanol (1:1) Tetrahydrate , 1982 .

[24]  Y. Inoue,et al.  A Molecular Orbital Study of Cyclodextrin Inclusion Complexes. I. The Calculation of the Dipole Moments of α-Cyclodextrin Aromatic Guest Complexes , 1988 .

[25]  K. Harata The Structure of the Cyclodextrin Complex. VII. The Crystal Structure of the α-Cyclodextrin–DMSO–Methanol(1 : 1 : 2) Dihydrate Complex A Simultaneous Inclusion of DMSO and Methanol , 1978 .

[26]  B. Hingerty,et al.  Topography of cyclodextrin inclusion complexes. XII. Hydrogen bonding in the crystal structure of α‐cyclodextrin hexahydrate: the use of a multicounter detector in neutron diffraction , 1980 .

[27]  W. Saenger,et al.  Crystal and molecular structure of cyclohepta-amylose dodecahydrate , 1982 .

[28]  W. Saenger,et al.  Inclusion Compounds. XIX.1a The Formation of Inclusion Compounds of α-Cyclodextrin in Aqueous Solutions. Thermodynamics and Kinetics , 1967 .

[29]  J. Fayós,et al.  Topography of cyclodextrin inclusion complexes : Part II. The iodine-cyclohexa-amylose tetrahydrate complex; its molecular geometry and cage-type crystal structure , 1973 .

[30]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XVIII. Crystal Structure of β-Cyclodextrin–Benzyl Alcohol (1:1) Complex Pentahydrate , 1985 .

[31]  B. Hingerty,et al.  “Induced-fit”-type complex formation of the model enzyme α-cyclodextrin , 1976 .

[32]  Y. Inoue,et al.  Geometry of cyclohexaamylose inclusion complexes with some substituted benzenes in aqueous solution based on carbon-13 NMR chemical shifts , 1985 .

[33]  W. Saenger,et al.  Topographie der Cyclodextrin‐Einschlußverbindungen, VII. Röntgenstrukturanalyse des α‐Cyclodextrin. Krypton‐Pentahydrats. Zum Einschlußmechanismus des Modell‐Enzyms , 1976 .

[34]  Christian Betzel,et al.  Topography of cyclodextrin inclusion complexes, part 20. Circular and flip-flop hydrogen bonding in .beta.-cyclodextrin undecahydrate: a neutron diffraction study , 1984 .

[35]  W. Saenger,et al.  Water Molecule in Hydrophobic Surroundings: Structure of α-Cyclodextrin-Hexahydrate (C6H10O5)6·6H2O , 1972, Nature.

[36]  Toshio Fujita,et al.  Quantitative structure-reactivity analysis of the inclusion mechanism by cyclodextrins , 1985 .

[37]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–p-Nitrophenol (1 : 1) Complex Monohydrate , 1982 .

[38]  Takuji Sugimoto,et al.  Approach to the aspects of driving force of inclusion by .alpha.-cyclodextrin , 1978 .

[39]  Wolfram Saenger,et al.  Topography of cyclodextrin inclusion complexes. III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex , 1974 .

[40]  K. Harata,et al.  The structure of the Cyclodextrin Complex. XIV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–Benzaldehyde (1 : 1) Complex , 1982 .

[41]  K. Harata The Structure of the Cyclodextrin Complex. IX. The Crystal Structure of α-Cyclodextrin–m-Nitroaniline (1:1) Hexahydrate Complex , 1980 .

[42]  Y. Matsui Molecular Mechanical Calculation on Cyclodextrin Inclusion Complexes. I. The Structures of α-Cyclodextrin Complexes Estimated by van der Waals Interaction Energy Calculation , 1982 .