New Insights into Encodings from MaxCSP into Partial MaxSAT

We analyze the existing encodings from MaxCSP into Partial MaxSAT, and report on a number of new insights that we have gained from our analysis, which can be summarized as follows: (i) the at-most-one (AMO) condition can be omitted in direct encodings from MaxCSP into Partial MaxSAT, and auxiliary variables are not needed; (ii) the sequential encoding of the cardinality constraint is, in fact, a reformulation of a regular encoding; (iii) the All Different constraint based on regular literals may be simplified; (iv) if we represent, in support encodings, the supporting values of a variable using intervals, then we can derive a genuine regular support encoding without exponential blowup; and (v) the Equal constraint admits a concise representation with regular signs.

[1]  Joao Marques-Silva,et al.  Algorithms for Maximum Satisfiability using Unsatisfiable Cores , 2008, 2008 Design, Automation and Test in Europe.

[2]  Ian P. Gent Arc Consistency in SAT , 2002, ECAI.

[3]  Steven David Prestwich,et al.  CNF Encodings , 2021, Handbook of Satisfiability.

[4]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[5]  Felip Manyà,et al.  New Inference Rules for Max-SAT , 2007, J. Artif. Intell. Res..

[6]  Josep Argelich,et al.  Encoding Max-CSP into Partial Max-SAT , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[7]  Toby Walsh,et al.  SAT v CSP , 2000, CP.

[8]  Carlos Ansótegui,et al.  Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables , 2004, SAT.

[9]  Josep Argelich,et al.  Sequential Encodings from Max-CSP into Partial Max-SAT , 2009, SAT.

[10]  Peter van Beek,et al.  On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems , 1998, AAAI/IAAI.

[11]  Carsten Sinz,et al.  Towards an Optimal CNF Encoding of Boolean Cardinality Constraints , 2005, CP.

[12]  Josep Argelich,et al.  The First and Second Max-SAT Evaluations , 2008, J. Satisf. Boolean Model. Comput..

[13]  Josep Argelich,et al.  Modelling Max-CSP as Partial Max-SAT , 2008, SAT.

[14]  Josep Argelich,et al.  Regular Encodings from Max-CSP into Partial Max-SAT , 2009, 2009 39th International Symposium on Multiple-Valued Logic.