Experiments in Variable-Resolution Combat Modeling

This article examines the differences in combat outcomes predicted by models of different resolution applied to identical combat situations. First, hypothetical combat situations are posed; then several models of varying degrees of resolution in the spatial representation, aggregation of forces, and time step are used to predict losses and battle winners. Both stochastic and deterministic simulations are used. The comparisons of outcomes provide important insights into the problems of aggregation. Some observations from this set of experiments are that intuition regarding outcomes, causes, and effects are frequently wrong, leading to bad approximations in the aggregate. Scaling for different levels of resolution is possible, but a method of predicting the appropriate scaling technique and factors in advance has not been found. The differences in outcomes between stochastic and deterministic models are most pronounced in the «fair fight» regime in which the force balance (accounting for situational factors) is nearly even. Because defense analysis frequently operates in this regime (getting «just enough» force to a theater or because constrained defense budget allocations may not permit overwhelming odds) this result implies that great care should be taken to understand the possible variance in outcomes