Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence.

Improvements of the resolution homogeneity of an ultra-thin artificial apposition compound eye objective are accomplished by the use of a chirped array of ellipsoidal micro-lenses. The array contains 130x130 individually shaped ellipsoidal lenses for channel-wise correction of astigmastism and field curvature occurring under oblique incidence. We present an analytical approach for designing anamorphic micro-lenses for such purpose based on Gullstrands equations and experimentally validate the improvement. Considerations for the design of the photolithographical masks for the micro-lens array fabrication by melting of photoresist cylinders with ellipsoidal basis are presented. Measurements of the optically performance are proceed on first realized artificial compound eye prototypes showing a significant improvement of angular resolution homogeneity over the complete field of view of 64.3?.

[1]  Peter Schreiber,et al.  Artificial compound eyes: different concepts and their application for ultraflat image acquisition sensors , 2004, SPIE MOEMS-MEMS.

[2]  J Jahns,et al.  Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics. , 1997, Applied optics.

[3]  Javier Alda,et al.  Properties of moiré magnifiers , 1998 .

[4]  P. Nussbaum,et al.  Design, fabrication and testing of microlens arrays for sensors and microsystems , 1997 .

[5]  M. Hutley,et al.  The moire magnifier , 1994 .

[6]  M. Hutley,et al.  The manufacture of microlenses by melting photoresist , 1990 .

[7]  R. F. Stevens,et al.  Optical inspection of periodic structures using lens arrays and moire magnification , 1999 .

[8]  A A Friesem,et al.  Fourier transformation with a planar holographic doublet. , 1995, Optics letters.

[9]  A. Gullstrand Beitrag zur Theorie des Astigmatismus1 , 1891 .

[10]  Lars Erdmann,et al.  Technique for monolithic fabrication of silicon microlenses with selectable rim angles , 1997 .

[11]  Pierre-Yves Burgi,et al.  A 128 /spl times/ 128 pixel 120 dB dynamic range vision sensor chip for image contrast and orientation extraction , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[12]  Ernst-Bernhard Kley,et al.  Approximation of refractive micro-optical profiles by minimal surfaces , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[13]  Andreas Tünnermann,et al.  Artificial apposition compound eye fabricated by micro-optics technology. , 2004, Applied optics.

[14]  Hans J. Tiziani,et al.  Microlens arrays with spatial variation of the optical functions , 1997 .

[15]  Hans Peter Herzig,et al.  Microlens array imaging system for photolithography , 1996 .

[16]  G. Connell,et al.  Technique for monolithic fabrication of microlens arrays. , 1988, Applied optics.

[17]  Selviah,et al.  Astigmatism in ellipsoidal and spherical photoresist microlenses used at oblique incidence , 1993 .

[18]  Jürgen Jahns,et al.  Paraxial theory of planar integrated systems , 1997 .

[19]  A. Tünnermann,et al.  Thin compound-eye camera. , 2005, Applied optics.

[20]  Frank Wippermann,et al.  Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective , 2005, SPIE Optical Systems Design.

[21]  Andreas Tünnermann,et al.  Microoptical telescope compound eye. , 2005, Optics express.

[22]  S. Haselbeck,et al.  Microlenses fabricated by melting a photoresist on a base layer , 1993 .

[23]  Hans Peter Herzig,et al.  Surface profiles of reflow microlenses under the influence of surface tension and gravity , 2000 .