The complexity of chromatic strength and chromatic edge strength

Abstract.The sum of a coloring is the sum of the colors assigned to the vertices (assuming that the colors are positive integers). The sum ∑ (G) of graph G is the smallest sum that can be achieved by a proper vertex coloring of G. The chromatic strength s(G) of G is the minimum number of colors that is required by a coloring with sum ∑ (G). For every k, we determine the complexity of the question “Is s(G) ≤ k?”: it is coNP-complete for k = 2 and Θ2p-complete for every fixed k ≥ 3. We also study the complexity of the edge coloring version of the problem, with analogous definitions for the edge sum ∑′(G) and the chromatic edge strength s′(G). We show that for every k ≥ 3, it is Θ2p-complete to decide whether s′(G) ≤ k. As a first step of the proof, we present graphs for every r ≥ 3 with chromatic index r and edge strength r + 1. For some values of r, such graphs have not been known before.

[1]  Christos H. Papadimitriou,et al.  Two remarks on the power of counting , 1983, Theoretical Computer Science.

[2]  Mihir Bellare,et al.  On Chromatic Sums and Distributed Resource Allocation , 1998, Inf. Comput..

[3]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[4]  Edward F. Schmeichel,et al.  On the cost chromatic number of outerplanar, planar, and line graphs , 1997, Discuss. Math. Graph Theory.

[5]  László Lovász The Membership Problem in Jump Systems , 1997, J. Comb. Theory, Ser. B.

[6]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[7]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[8]  Pierre McKenzie,et al.  Alternating and empty alternating auxiliary stack automata , 2003, Theor. Comput. Sci..

[9]  Klaus W. Wagner,et al.  More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1986, Theor. Comput. Sci..

[10]  Klaus-Jörn Lange,et al.  Empty Alternation , 1994, MFCS.

[11]  Dániel Marx A short proof of the NP-completeness of minimum sum interval coloring , 2005, Oper. Res. Lett..

[12]  Ewa Kubicka,et al.  The chromatic sum of a graph: history and recent developments , 2004, Int. J. Math. Math. Sci..

[13]  Lane A. Hemaspaandra,et al.  The Strong Exponential Hierarchy Collapses , 1987, J. Comput. Syst. Sci..

[14]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[15]  Dániel Marx,et al.  Precoloring Extension on Chordal Graphs , 2006 .

[16]  Stephen R. Mahaney Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[17]  Klaus Jansen,et al.  Scheduling with Incompatible Jobs , 1992, Discret. Appl. Math..

[18]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[19]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[20]  Ewa Kubicka,et al.  An introduction to chromatic sums , 1989, CSC '89.

[21]  Edith Hemaspaandra,et al.  Recognizing when Greed can Approximate Maximum Independent Sets is Complete for Parallel Access to NP , 1998, Inf. Process. Lett..

[22]  John Mitchem,et al.  On the cost-chromatic number of graphs , 1997, Discret. Math..

[23]  Majid Sarrafzadeh,et al.  On the Sum Coloring Problem on Interval Graphs , 1999, Algorithmica.

[24]  Hossein Hajiabolhassan,et al.  Minimal coloring and strength of graphs , 2000, Discret. Math..

[25]  Guy Kortsarz,et al.  Minimum Color Sum of Bipartite Graphs , 1998, J. Algorithms.

[26]  KENNETH J. SUPOWIT,et al.  Finding a Maximum Planar Subset of a Set of Nets in a Channel , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[27]  Tibor Szkaliczki,et al.  Routing with Minimum Wire Length in the Dogleg-Free Manhattan Model is NP-Complete , 1999, SIAM J. Comput..

[28]  Jörg Rothe,et al.  Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for parallel access to NP , 1997, JACM.

[29]  Guy Kortsarz,et al.  Sum Coloring Interval and k-Claw Free Graphs with Application to Scheduling Dependent Jobs , 2003, Algorithmica.

[30]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[31]  Marek Kubale,et al.  Edge-chromatic sum of trees and bounded cyclicity graphs , 2000, Inf. Process. Lett..

[32]  Klaus W. Wagner More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1987, Theor. Comput. Sci..

[33]  Jörg Vogel,et al.  Theta2p-Completeness: A Classical Approach for New Results , 2000, FSTTCS.

[34]  Edith Hemaspaandra,et al.  Computational Politics: Electoral Systems , 2000, MFCS.

[35]  Zsolt Tuza,et al.  Precoloring extension. I. Interval graphs , 1992, Discret. Math..

[36]  Norman Biggs,et al.  An Edge-Colouring Problem , 1972 .

[37]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[38]  Guy Kortsarz,et al.  The Minimum Color Sum of Bipartite Graphs , 1997, ICALP.

[39]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[40]  Mohammad R. Salavatipour,et al.  On Sum Coloring of Graphs , 2003, Discret. Appl. Math..

[41]  Marek Kubale,et al.  A 27/26-Approximation Algorithm for the Chromatic Sum Coloring of Bipartite Graphs , 2002, APPROX.

[42]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .