A spline collocation method for multidimensional strongly elliptic pseudodifferential operators of order zero

In the present paper we prove the stability of a nodal spline collocation method for (locally) strongly elliptic zero order pseudodifferential equations inL2 (Ω), where Ω is a bounded Lipschitz domain inℝn. As trial functions we use multi-polynomial splines of odd multi-degree on a rectangular grid. The key of our analysis is the reduction to the case of an operator with frozen symbol by using a local principle due to one of the authors [30]. Moreover, for a right hand sightf ∈H3 (Ω),s>n/2, we obtain an asymptotic error estimate. Finally we extend these results to the case of (locally) strongly elliptic pseudodifferential equations on the torusTn.

[1]  Siegfried Prössdorf,et al.  Ein Lokalisierungsprinzip in der Theorie der Spline‐Approximationen und einige Anwendungen , 1984 .

[2]  H. Bertagnolli E. Mandelkow (Eds.): Synchrotron Radiation in Chemistry and Biology I, Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hongkong 1988. 239 Seiten, Preis: DM 148,–. , 1989 .

[3]  Bernd Silbermann,et al.  Lokale Theorie des Reduktionsverfahrens für Toeplitzoperatoren , 1981 .

[4]  W. Wendland,et al.  Pointwise error estimates for the trigonometric collocation method applied to singular integral equations and periodic pseudodiΘerential equations , 1989 .

[5]  G. Schmidt Spline collocation for singular integro-differential equations over (0.1) , 1986 .

[6]  S. Prössdorf,et al.  A Finite Element Collocation Method for Singular Integral Equations , 1981 .

[7]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[8]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[9]  Mark A. Lukas,et al.  The application and numerical solution of integral equations , 1980 .

[10]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[11]  B. Silbermann Lokale Theorie des Reduktionsverfahrens für singuläre Integralgleichungen , 1982 .

[12]  Siegfried Prössdorf,et al.  Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen , 1977 .

[13]  R. Kress Linear Integral Equations , 1989 .

[14]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[15]  R. Schneider Reduction of order for pseudodifferential operators on lipschitz domains , 1991 .

[16]  B. Silbermann,et al.  Local theory of the collocation method for the approximate solution of singular integral equations, I , 1984 .

[17]  Martin Costabel,et al.  On the Convergence of Collocation Methods for Boundary Integral Equations on Polygons , 1987 .

[18]  Wolfgang L. Wendland,et al.  On the asymptotic convergence of collocation methods with spline functions of even degree , 1985 .

[19]  Joseph J. Kohn,et al.  An algebra of pseudo‐differential operators , 1965 .

[20]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[21]  Gunther Schmidt,et al.  On ϵ‐Collocation for Pseudodifferential Equations on a Closed Curve , 1986 .

[22]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[23]  I. Sloan,et al.  Collocation methods for the second kind integral equations with non-compact operators , 1989 .

[24]  I. Gohberg,et al.  Einführung in die Theorie der eindimensionalen singulären Integraloperatoren , 1979 .

[25]  B. Silbermann,et al.  A Finite Element Collocation Method for Bisingular Integral Equations , 1985 .

[26]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[27]  Reinhold Schneider,et al.  Error analysis of a boundary element collocation method for a screen problem in , 1992 .

[28]  A. Rathsfeld,et al.  Stabilitätskriterien für Näherungsverfahren bei singulären Integralgleichungen in $L^p$ , 1987 .

[29]  Andreas Rathsfeld,et al.  The Invertibility of the Double Layer Potential Operator in the Space of Continuous Functions Defined on a Polyhedron: The Panel Method , 1992 .

[30]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[31]  B. Silbermann,et al.  Numerical Analysis for Integral and Related Operator Equations , 1991 .

[32]  D. Arnold,et al.  The convergence of spline collocation for strongly elliptic equations on curves , 1985 .

[33]  Ronald R. Coifman,et al.  Au delà des opérateurs pseudo-différentiels , 1978 .

[34]  M. Agranovich Spectral properties of elliptic pseudodifferential operators on a closed curve , 1979 .

[35]  W. Wendland,et al.  The fourier series representation of pseudo-differentiai operators on closed curves , 1987 .

[36]  S. Prössdorf Numerische Behandlung singulärer Integralgleichungen , 1989 .

[37]  S. Prössdorf,et al.  A spline collocation method for singular integral equations with piecewise continuous coefficients , 1984 .

[38]  Johannes Elschner,et al.  On spline collocation for convolution equations , 1989 .

[39]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[40]  V. Ivanov,et al.  The Theory of Approximate Methods and Their Application to the Numerical Solution of Singular Integr , 1978 .

[41]  L. Collatz,et al.  Vainikko, G., Funktionalanalysis der Diskretisierungsmethoden, Leipzig. BSB B. G. Teubner Verlagsgesellschaft. 1976. 136 S., M 14,—(Teubner-Texte zur Mathematik) , 1978 .

[42]  L. Hörmander The analysis of linear partial differential operators , 1990 .