Exploring invariant sets and invariant measures.

We propose a method to explore invariant measures of dynamical systems. The method is based on numerical tools which directly compute invariant sets using a subdivision technique, and invariant measures by a discretization of the Frobenius-Perron operator. Appropriate visualization tools help to analyze the numerical results and to understand important aspects of the underlying dynamics. This will be illustrated for examples provided by the Lorenz system. (c) 1997 American Institute of Physics.

[1]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[2]  Yuri Kifer,et al.  Computations in dynamical systems via random perturbations , 1997 .

[3]  M. Dellnitz,et al.  An adaptive method for the approximation of the generalized cell mapping , 1997 .

[4]  Kunibert G. Siebert,et al.  Functions Defining Arbitrary Meshes – A Flexible Interface between Numerical Data and Visualization Routines , 1996, Comput. Graph. Forum.

[5]  Nelson Max,et al.  Advances in scientific visualization , 1995 .

[6]  Qiang Du,et al.  High order approximation of the Frobenius-Perron operator , 1993 .

[7]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[8]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  Irene Gargantini,et al.  Linear octtrees for fast processing of three-dimensional objects , 1982, Comput. Graph. Image Process..

[11]  Schachter,et al.  Computer Image Generation for Flight Simulation , 1981, IEEE Computer Graphics and Applications.

[12]  Doctor,et al.  Display Techniques for Octree-Encoded Objects , 1981, IEEE Computer Graphics and Applications.

[13]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[14]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[15]  Michael Dellnitz,et al.  The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .

[16]  Martin Rumpf,et al.  GRAPE - Eine objektorientierte Visualisierungs- und Numerikplattform , 1992, Inform. Forsch. Entwickl..

[17]  Martin Rumpf,et al.  Visualization of Finite Elements and Tools for Numerical Analysis , 1992 .

[18]  N. S. Barnett,et al.  Private communication , 1969 .