Measuring Model Risk

We propose to interpret distribution model risk as sensitivity of expected loss to changes in the risk factor distribution, and to measure the distribution model risk of a portfolio by the maximum expected loss over a set of plausible distributions defined in terms of some divergence from an estimated distribution. The divergence may be relative entropy, a Bregman distance, or an $f$-divergence. We give formulas for the calculation of distribution model risk and explicitly determine the worst case distribution from the set of plausible distributions. We also give formulas for the evaluation of divergence preferences describing ambiguity averse decision makers.

[1]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[4]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[5]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[6]  J. Schumacher,et al.  Model risk and capital reserves , 2010 .

[7]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[8]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[9]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[10]  Craig A. Friedman Confronting Model Misspecification in Finance: Tractable Collections of Scenario Probability Measures for Robust Financial Optimization Problems , 2002 .

[11]  Craig A. Friedman Conditional Value-at-Risk in the Presence of Multiple Probability Measures , 2002 .

[12]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[13]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[14]  Imre Csiszár,et al.  Systematic stress tests with entropic plausibility constraints , 2013 .

[15]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[16]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[17]  Amir Ahmadi-Javid,et al.  Entropic Value-at-Risk: A New Coherent Risk Measure , 2012, J. Optim. Theory Appl..

[18]  Rama Cont Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .

[19]  A. Dawid,et al.  Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.

[20]  Lars Peter Hansen,et al.  Doubts or variability? , 2009, J. Econ. Theory.

[21]  Ramon Casadesus-Masanell,et al.  Maxmin Expected Utility over Savage Acts with a Set of Priors , 2000, J. Econ. Theory.

[22]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[23]  Marco Avellaneda,et al.  Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model , 1996 .

[24]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[25]  Risk Book MODEL RISK, Concepts, Calibration and Pricing , 2000 .

[26]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[27]  Douglas J. Miller,et al.  Maximum entropy econometrics: robust estimation with limited data , 1996 .

[28]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[29]  Lars Peter Hansen,et al.  Recursive Robust Estimation and Control Without Commitment , 2007, J. Econ. Theory.

[30]  Imre Csiszár,et al.  On minimization of entropy functionals under moment constraints , 2008, 2008 IEEE International Symposium on Information Theory.

[31]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[32]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[33]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[34]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[35]  Jeff B. Paris,et al.  A note on the inevitability of maximum entropy , 1990, Int. J. Approx. Reason..

[36]  H. Soner,et al.  Superhedging and Dynamic Risk Measures Under Volatility Uncertainty , 2010 .

[37]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[38]  Bogdan Grechuk,et al.  Maximum Entropy Principle with General Deviation Measures , 2009, Math. Oper. Res..

[39]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .