Finite difference time domain simulation for the brass instrument bore.

In this article, interleaved finite difference time domain methods are developed for the purpose of simulating the dynamics of the acoustic bore, using, as a starting point, an impedance formulation of wave propagation in an acoustic tube; attention is focused here on modeling of viscothermal and radiation losses in the time domain. In particular, in contrast to other methods, the bore, including the mouth-piece and bell, is treated as a unit, and is not subdivided into smaller units such as cylindrical or conical segments. Numerical simulations of input impedances are then compared with measurement for a variety of brass instruments.

[1]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[2]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[3]  Xavier Rodet,et al.  New algorithm for nonlinear propagation of a sound wave applica-tion to a physical model of a trumpe , 2000 .

[4]  Thomas Hélie,et al.  Unidimensional models of acoustic propagation in axisymmetric waveguides. , 2003, The Journal of the Acoustical Society of America.

[5]  J. Schwinger,et al.  On the Radiation of Sound from an Unflanged Circular Pipe , 1948 .

[6]  Simon Félix,et al.  Effects of bending portions of the air column on the acoustical resonances of a wind instrument. , 2008, The Journal of the Acoustical Society of America.

[7]  C. J. Nederveen,et al.  RADIATION IMPEDANCE OF TUBES WITH DIFFERENT FLANGES: NUMERICAL AND EXPERIMENTAL INVESTIGATIONS , 2001 .

[8]  Stefan Bilbao,et al.  Modelling of Brass Instrument Valves , 2011 .

[9]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[10]  Murray Campbell,et al.  Brass instruments as we know them today , 2004 .

[11]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[12]  Thierry Voinier,et al.  Real-time synthesis of clarinet-like instruments using digital impedance models. , 2005, The Journal of the Acoustical Society of America.

[13]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[14]  William J. Strong,et al.  Numerical method for calculating input impedances of the oboe , 1979 .

[15]  Perry R. Cook,et al.  TBone: An Interactive WaveGuide Brass Instrument Synthesis Workbench for the NeXT Machine , 1991, ICMC.

[16]  Philippe Guillemain,et al.  Approximation formulae for the acoustic radiation impedance of a cylindrical pipe , 2008, 0811.3625.

[17]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[18]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[19]  René Causse,et al.  Input impedance of brass musical instruments—Comparison between experiment and numerical models , 1984 .

[20]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[21]  Edmund Taylor Whittaker,et al.  On the partial differential equations of mathematical physics , 1903 .

[22]  Murray Campbell,et al.  Discrete-time modeling of woodwind instrument bores using wave variables. , 2003, The Journal of the Acoustical Society of America.

[23]  D. H. Keefe Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions , 1984 .

[24]  Denis Matignon,et al.  Digital Waveguide Modeling for Wind Instruments: Building a State–Space Representation Based on the Webster–Lokshin Model , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[25]  D. Matignon,et al.  ACOUSTIC MODELLING OF A CONVEX PIPE ADAPTED FOR DIGITAL WAVE GUIDE SIMULATION , 2010 .

[26]  C. Zwikker,et al.  Sound Absorbing Materials , 1949 .

[27]  Arthur H. Benade,et al.  On the Propagation of Sound Waves in a Cylindrical Conduit , 1968 .

[28]  Stefan Bilbao,et al.  Numerical Sound Synthesis , 2009 .

[29]  Gregor Widholm,et al.  Brass wind instrument quality measured and evaluated by a new computer system , 1995 .

[30]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[31]  Fred B. Daniels Acoustical Impedance of Enclosures , 1947 .

[32]  Xavier Rodet,et al.  Radiation of a pulsating portion of a sphere: application to horn radiation , 2003 .

[33]  Arthur H. Benade,et al.  On Woodwind Instrument Bores , 1959 .

[34]  Stefan Bilbao Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics , 2009 .

[35]  Daniel Noreland,et al.  A Numerical Method for Acoustic Waves in Horns , 2002 .

[36]  Heinrich Pichler,et al.  BIAS: A Computer-Aided Test System for Brass Wind Instruments , 1989 .

[37]  A. Myers Characterization and taxonomy of historic brass musical instruments from an acoustical standpoint , 1998 .

[38]  Time Domain Simulation of Brass Instruments , 2011 .

[39]  Denis Matignon,et al.  DIFFUSIVE REPRESENTATIONS FOR THE ANALYSIS AND SIMULATION OF FLARED ACOUSTIC PIPES WITH VISCO-THERMAL LOSSES , 2006 .

[40]  A G Webster,et al.  Acoustical Impedance and the Theory of Horns and of the Phonograph. , 1919, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Joël Gilbert,et al.  A simulation tool for brassiness studies. , 2008, The Journal of the Acoustical Society of America.

[42]  Christophe Vergez,et al.  Trompette et trompettiste : un systeme dynamique non lineaire a analyser, modeliser et simuler dans un contexte musical , 2000 .

[43]  Ritu Sharma Speech Synthesis , 2019, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[44]  Vincent Pagneux,et al.  A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation , 1996 .

[45]  A Avraham Hirschberg,et al.  Shock waves in trombones , 1996 .

[46]  Sjoerd W. Rienstra,et al.  Webster's Horn Equation Revisited , 2005, SIAM J. Appl. Math..