Reasoning with Polarity in Categorial Type Logic

The research presented in this thesis follows the parsing as deduction approach to lin- guistics. We use the tools of Categorial Type Logic (CTL) to study the interface of natural language syntax and semantics. Our aim is to investigate the mathematical structure of CTL and explore the possibilities it offers for analyzing natural language structures and their interpretation. The thesis is divided into three parts. Each of them has an introductory chapter. In Chapter 1, we introduce the background assumptions of the categorial approach in linguistics, and we sketch the developments that have led to the introduction of CTL. We discuss the motivation for using logical methods in linguistic analysis. In Chapter 3, we propose our view on the use of unary modalities as `logical features'. In Chapter 5, we set up a general notion of grammatical composition taking into account the form and the meaning dimensions of linguistic expressions. We develop a logical theory of licensing and antilicensing relations that cross-cuts the form and meaning dimensions. Throughout the thesis we focus attention on polarity. This term refers both to the polarity of the logical operators of CTL and to the polarity items one finds in natural language, which, furthermore, are closely connected to natural reasoning. Therefore, the title of this thesis Reasoning with Polarity in Categorial Type Logic is intended to express three meanings. Firstly, we reason with the polarity of the logical operators of CTL and study their derivability patterns. In Chapter 2, we explore the algebraic principles that govern the behavior of the type-forming operations of the Lambek calculus. We extend the categorial vocabulary with downward entailing unary operations obtaining the full tool- kit that we use in the rest of the thesis. We employ unary operators to encode and compute monotonicity information (Chapter 4), to account for the different ways of scope taking of generalized quantifiers (Chapter 6), and to model licensing and antilicensing relations (Chapter 7). Secondly, in Chapter 4, we model natural reasoning inferences drawn from structures suitable for negative polarity item occurrences. In particular, we describe a system of inference based on CTL. By decorating functional types with unary operators we encode the semantic distinction between upward and downward monotone functions. Moreover, we study the advantages of this encoding by exploring the contribution of v monotone functions to the study of natural reasoning and to the analysis of the syntactic distribution of negative polarity items. Thirdly, in Chapter 7, we study the distribution of polarity-sensitive expressions. We show how our theory of licensing and antilicensing relations successfully differentiates between negative polarity items, which are `attracted' by their triggers, and positive polarity items, which are `repelled' by them. We investigate these compatibility and incompatibility relations from a cross-linguistic perspective, and show how we reduce distributional differences between polarity-sensitive items in Dutch, Greek and Italian to differences in the lexical type assignments of these languages.

[1]  S. Leśniewski Grundzüge eines neuen Systems der Grundlagen der Mathematik , 1929 .

[2]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[3]  Y. Bar-Hillel A Quasi-Arithmetical Notation for Syntactic Description , 1953 .

[4]  Willard Van Orman Quine,et al.  From a Logical Point of View , 1955 .

[5]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[6]  R. Lyndon PROPERTIES PRESERVED UNDER HOMOMORPHISM , 1959 .

[7]  Willard Van Orman Quine,et al.  Word and Object , 1960 .

[8]  Joachim Lambek,et al.  On the Calculus of Syntactic Types , 1961 .

[9]  Yehoshua Bar-Hillel,et al.  Language and Information , 1964 .

[10]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[11]  Yehoshua Bar-Hillel,et al.  Language and information : selected essays on their theory and application , 1965 .

[12]  John Robert Ross,et al.  Constraints on variables in syntax , 1967 .

[13]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[14]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[15]  Jaskowski,et al.  Polish Logic 1920-1939. , 1969 .

[16]  Nomi Erteschik-Shir,et al.  On the nature of island constraints , 1973 .

[17]  R. Montague Formal philosophy; selected papers of Richard Montague , 1974 .

[18]  R. May The grammar of quantification , 1978 .

[19]  R. Labrecque The Correspondence Theory , 1978 .

[20]  Patrick Suppes Logical inference in English: A preliminary analysis , 1979 .

[21]  William A. Ladusaw Polarity sensitivity as inherent scope relations , 1980 .

[22]  M. Linebarger The grammar of negative polarity , 1981 .

[23]  Luigi Rizzi,et al.  Issues in Italian Syntax , 1981 .

[24]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[25]  L. M. Faltz,et al.  Boolean semantics for natural language , 1984 .

[26]  Jeroen Groenendijk,et al.  On the semantics of questions and the pragmatics of answers , 1984 .

[27]  Horst Herrlich,et al.  Galois Connections , 1985, Mathematical Foundations of Programming Semantics.

[28]  Dingeman Johannes Norbertus van Eijck,et al.  Aspects of quantification in natural language , 1985 .

[29]  J. Benthem Essays in Logical Semantics , 1986 .

[30]  W. Buszkowski The Logic of Types , 1987 .

[31]  Jae-Woong Choe,et al.  Anti-quantifiers and a theory of distributivity , 1987 .

[32]  J. Benthem Categorial Grammar and Lambda Calculus , 1987 .

[33]  Marcia C. Linebarger,et al.  Negative polarity and grammatical representation , 1987 .

[34]  J. Lambek,et al.  Categorial and Categorical Grammars , 1988 .

[35]  Johan van Benthem,et al.  The Lambek Calculus , 1988 .

[36]  G. Frege Die Grundlagen der Arithmetik , 1988 .

[37]  J. Girard Proof Theory and Logical Complexity , 1989 .

[38]  V. Michele Abrusci,et al.  A comparison between lambek syntactic calculus and intuitionistic linear propositional logic , 1990, Mathematical Logic Quarterly.

[39]  Heinrich Wansing,et al.  Formulas-as-types for a Hierarchy of Sublogics of Intuitionistic Propositional Logic , 1992, Nonclassical Logics and Information Processing.

[40]  J. Michael Dunn,et al.  Gaggle Theory: An Abstraction of Galois Connections and Residuation with Applications to Negation, Implication, and Various Logical Operations , 1990, JELIA.

[41]  I. Laka Negation in syntax--on the nature of functional categories and projections , 1990 .

[42]  Victor Sanchez,et al.  Studies on Natural Logic and Categorial Grammar , 1991 .

[43]  V. Michele Abrusci Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic , 1991, J. Symb. Log..

[44]  Victor Manual Sánchez Valencia,et al.  Studies on natural logic and categorial grammar , 1991 .

[45]  Glyn Morrill,et al.  Heads and Phrases. Type Calculus for Dependency and Constituent Structure , 1991 .

[46]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[47]  Liliane Haegeman,et al.  Introduction to Government and Binding Theory , 1991 .

[48]  Raffaella Zanuttini,et al.  Syntactic properties of sentential negation : a comparative study of Romance languages , 1991 .

[49]  Kosta Dosen,et al.  A Brief Survey of Frames for the Lambek Calculus , 1992, Math. Log. Q..

[50]  Noam Chomsky,et al.  The Minimalist Program , 1992 .

[51]  Mati Pentus,et al.  Lambek grammars are context free , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[52]  Frans Zwarts,et al.  Polarity, veridicality and temporal connectives , 1993 .

[53]  Anna Szabolcsi,et al.  Weak islands and an algebraic semantics for scope taking , 1993 .

[54]  H.L.W. Hendriks,et al.  Studied flexibility : categories and types in syntax and semantics , 1993 .

[55]  Ljiljana Progovac,et al.  Negative and Positive Polarity: A Binding Approach , 1994 .

[56]  David R. Dowty The Role of Negative Polarity and Concord Marking in Natural Language Reasoning , 1994 .

[57]  W. Grochowski,et al.  Polska Akademia Nauk , 1994 .

[58]  Glyn Morrill,et al.  Type Logical Grammar: Categorial Logic of Signs , 1994 .

[59]  N. Kurtonina,et al.  Frames and Labels , 1995 .

[60]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[61]  Mati Pentus Models for the Lambek Calculus , 1995, Ann. Pure Appl. Log..

[62]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[63]  Lucia M. Tovena Studies on polarity sensitivity , 1996 .

[64]  Michael Moortgat,et al.  Multimodal linguistic inference , 1995, J. Log. Lang. Inf..

[65]  Edward P. Stabler,et al.  Derivational Minimalism , 1996, LACL.

[66]  M. Moortgat In Situ Binding: A Modal Analysis , 1996 .

[67]  T. Stowell,et al.  Distributivity and Negation: The Syntax of Each and Every , 1997 .

[68]  M. Moortgat,et al.  Structural control , 1997 .

[69]  Wojciech Buszkowski,et al.  Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.

[70]  A. Giannakidou The Landscape of Polarity Items , 1997 .

[71]  Andrew Radford,et al.  句法学:最简方案导论 = Syntax : a minimalist introduction , 1997 .

[72]  F. Zwarts Three Types of Polarity , 1997 .

[73]  David I. Beaver,et al.  The Handbook of Logic and Language , 1997 .

[74]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[75]  T. Reinhart Quantifier Scope: How labor is Divided Between QR and Choice Functions , 1997 .

[76]  Anna Szabolcsi Strategies for Scope Taking , 1997 .

[77]  Joachim Lambek,et al.  Type Grammar Revisited , 1997, LACL.

[78]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[79]  Rajeev Goré,et al.  Gaggles, Gentzen and Galois: How to display your favourite substructural logic , 1998, Logic Journal of the IGPL.

[80]  Anastasia Giannakidou,et al.  Polarity sensitivity as (non) veridical dependency , 2000 .

[81]  Mary Dalrymple,et al.  Semantics and syntax in lexical functional grammar : the resource logic approach , 1999 .

[82]  A. Giannakidou Affective Dependencies , 1999 .

[83]  Noam Chomsky Derivation by phase , 1999 .

[84]  J. Fry Proof nets and negative polarity licensing , 1999 .

[85]  Dirk K.J. Heylen,et al.  Types and Sorts: Resource Logic for Feature Checking , 1999 .

[86]  Bob Carpenter,et al.  The Turing Completeness of Multimodal Categorial Grammars , 1999 .

[87]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[88]  Yaroslav Fyodorov,et al.  A Natural Logic Inference System , 2000 .

[89]  Han Xi-w Negation in English , 2000 .

[90]  Raffaella Bernardi Polarity Items in Resource Logics. A comparison , 2000 .

[91]  Michael Moortgat,et al.  Constants of grammatical reasoning , 2000 .

[92]  Anastasia Giannakidou,et al.  The Meaning of Free Choice , 2001 .

[93]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[94]  Edward P. Stabler,et al.  Recognizing Head Movement , 2001, LACL.

[95]  Joachim Lambek,et al.  Type Grammars as Pregroups , 2001, Grammars.

[96]  Michael Moortgat,et al.  Galois Connections in Categorial Type Logic , 2001, Electron. Notes Theor. Comput. Sci..

[97]  D. Kandzari,et al.  Double negatives. , 2003, American heart journal.

[98]  M. Krifka,et al.  The Semantics and Pragmatics of Polarity Items , 2003 .

[99]  M. Grace A logical point of view , 2003, British Dental Journal.

[100]  Anna Szabolcsi,et al.  Positive Polarity – Negative Polarity , 2004 .

[101]  Willemijn Vermaat The Minimalist Move Operation in a Deductive Perspective , 2004 .

[102]  Raffaella Bernardi,et al.  Analyzing the Core of Categorial Grammar , 2004, J. Log. Lang. Inf..

[103]  Mark Steedman,et al.  The syntactic process , 2004, Language, speech, and communication.

[104]  Johan van Benthem,et al.  Meaning: Interpretation and inference , 1987, Synthese.