Lazy is timely: Status updates by an energy harvesting source

A source submits status updates to a service facility for delivery to a monitor. Each update requires energy and the source is powered by a stochastic energy harvesting system. With knowledge of the service facility state, the source avoids queue-induced delays by submitting a fresh update only after the service completion of a prior update. For a source with a large battery, we evaluate updating policies using a status age timeliness metric. We show that an optimal policy is lazy; following a service completion, the service facility is frequently left idle even though the server may have sufficient energy to submit an update.

[1]  F. B. Hildebrand,et al.  Methods of applied mathematics , 1953 .

[2]  P.E. Ross Managing care through the air [remote health monitoring] , 2004, IEEE Spectrum.

[3]  Sennur Ulukus,et al.  Achieving AWGN Capacity Under Stochastic Energy Harvesting , 2012, IEEE Transactions on Information Theory.

[4]  Roy D. Yates,et al.  Real-time status: How often should one update? , 2012, 2012 Proceedings IEEE INFOCOM.

[5]  Jing Yang,et al.  Optimal Packet Scheduling in an Energy Harvesting Communication System , 2010, IEEE Transactions on Communications.

[6]  Vinod Sharma,et al.  Optimal energy management policies for energy harvesting sensor nodes , 2008, IEEE Transactions on Wireless Communications.

[7]  Jing Yang,et al.  Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies , 2011, IEEE Journal on Selected Areas in Communications.

[8]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[9]  Sennur Ulukus,et al.  Binary energy harvesting channel with finite energy storage , 2013, 2013 IEEE International Symposium on Information Theory.

[10]  Anthony Ephremides,et al.  Effect of message transmission diversity on status age , 2014, 2014 IEEE International Symposium on Information Theory.

[11]  Aylin Yener,et al.  Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes , 2010, IEEE Transactions on Wireless Communications.

[12]  Elif Uysal-Biyikoglu,et al.  Age of information under energy replenishment constraints , 2015, 2015 Information Theory and Applications Workshop (ITA).

[13]  Anthony Ephremides,et al.  Age of information under random updates , 2013, 2013 IEEE International Symposium on Information Theory.

[14]  Patrick Mitran,et al.  On optimal online power policies for energy harvesting with finite-state Markov channels , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  Michele Zorzi,et al.  Transmission Policies for Energy Harvesting Sensors with Time-Correlated Energy Supply , 2013, IEEE Transactions on Communications.