Rigid Shape Matching by Segmentation Averaging

We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extension, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the ¿central¿ segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

[1]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Long Zhu,et al.  Unsupervised Structure Learning: Hierarchical Recursive Composition, Suspicious Coincidence and Competitive Exclusion , 2008, ECCV.

[3]  Andrew Blake,et al.  Multiscale Categorical Object Recognition Using Contour Fragments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[6]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Andrew Zisserman,et al.  A Boundary-Fragment-Model for Object Detection , 2006, ECCV.

[8]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[9]  Marina Meila,et al.  Comparing Clusterings by the Variation of Information , 2003, COLT.

[10]  Michael Werman,et al.  Self-Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[12]  Robert H. Trent,et al.  Geometric Mean Approximations of Individual Security and Portfolio Performance , 1969, Journal of Financial and Quantitative Analysis.

[13]  Hongzhi Wang,et al.  Shape Matching by Segmentation Averaging , 2008, ECCV.

[14]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[16]  M WellsWilliam,et al.  Alignment by Maximization of Mutual Information , 1997 .

[17]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Nebojsa Jojic,et al.  Capturing image structure with probabilistic index maps , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[19]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[23]  Ronen Basri,et al.  Hierarchy and adaptivity in segmenting visual scenes , 2006, Nature.

[24]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[27]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[28]  Ronen Basri,et al.  Recognition Using Region Correspondences , 1997, International Journal of Computer Vision.

[29]  Narendra Ahuja,et al.  Learning the Taxonomy and Models of Categories Present in Arbitrary Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[30]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[31]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  Olivier D. Faugeras,et al.  Shape Statistics for Image Segmentation with Prior , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[34]  Andrew Zisserman,et al.  Fusing Shape and Appearance Information for Object Category Detection , 2006, BMVC.

[35]  H. Quynh Dinh,et al.  Multi-Resolution Spin-Images , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[36]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[40]  CipollaRoberto,et al.  Multiscale Categorical Object Recognition Using Contour Fragments , 2008 .

[41]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Tapas Kanungo,et al.  Object recognition using appearance-based parts and relations , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Ralph Gross,et al.  Concurrent Object Recognition and Segmentation by Graph Partitioning , 2002, NIPS.

[44]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[45]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[46]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[47]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[48]  Carlo Tomasi,et al.  Image Similarity Using Mutual Information of Regions , 2004, ECCV.

[49]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[50]  Anat Levin,et al.  Learning to Combine Bottom-Up and Top-Down Segmentation , 2006, International Journal of Computer Vision.

[51]  W. Eric L. Grimson,et al.  Similarity templates for detection and recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[52]  Luc Van Gool,et al.  Simultaneous Object Recognition and Segmentation from Single or Multiple Model Views , 2006, International Journal of Computer Vision.

[53]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[56]  Shimon Ullman,et al.  Combined Top-Down/Bottom-Up Segmentation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Allen Y. Yang,et al.  Unsupervised segmentation of natural images via lossy data compression , 2008, Comput. Vis. Image Underst..