Designing antimicrobial peptides: form follows function

[1]  Wolfgang Guba,et al.  Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery. , 2011, Angewandte Chemie.

[2]  Peter N. R. Vennestrøm,et al.  Nach der Petrochemie: eine chemische Industrie auf der Basis erneuerbarer Ressourcen , 2011 .

[3]  Marc Torrent,et al.  The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? , 2011, Angewandte Chemie.

[4]  Elena Marchiori,et al.  Gaussian interaction profile kernels for predicting drug-target interaction , 2011, Bioinform..

[5]  Structural Framework for the Modulation of the Activity of the Hybrid Antibiotic Peptide Cecropin A‐Melittin [CA(1–7)M(2–9)] by Nε‐Lysine Trimethylation , 2011, Chembiochem : a European journal of chemical biology.

[6]  R. Jiji,et al.  Simultaneous Observation of Peptide Backbone Lipid Solvation and α‐Helical Structure by Deep‐UV Resonance Raman Spectroscopy , 2011, Chembiochem : a European journal of chemical biology.

[7]  M. Anderson,et al.  Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization , 2011, Caries Research.

[8]  R. Raines,et al.  An Evaluation of Peptide‐Bond Isosteres , 2011, Chembiochem : a European journal of chemical biology.

[9]  A. Leach,et al.  Molecular complexity and fragment-based drug discovery: ten years on. , 2011, Current opinion in chemical biology.

[10]  A. Grossfield,et al.  Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. , 2011, Biochimica et biophysica acta.

[11]  I Cosic,et al.  Advances in methods for therapeutic peptide discovery, design and development. , 2011, Current pharmaceutical biotechnology.

[12]  R. Liskamp,et al.  Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics , 2011, Chembiochem : a European journal of chemical biology.

[13]  M. Valvano,et al.  Extreme Antimicrobial Peptide and Polymyxin B Resistance in the Genus Burkholderia , 2011, Front. Microbio..

[14]  Eric D Brown,et al.  Antibiotics as probes of biological complexity. , 2011, Nature chemical biology.

[15]  C. Gualerzi,et al.  How to cope with the quest for new antibiotics , 2011, FEBS letters.

[16]  John A. Robinson,et al.  Protein epitope mimetics as anti-infectives. , 2011, Current opinion in chemical biology.

[17]  M. Cooper,et al.  Antibiotics in the clinical pipeline in 2011 , 2011, The Journal of Antibiotics.

[18]  C. Kocks,et al.  Recognition of Pathogenic Microbes by the Drosophila Phagocytic Pattern Recognition Receptor Eater* , 2011, The Journal of Biological Chemistry.

[19]  R. Epand,et al.  Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents , 2011, Cellular and Molecular Life Sciences.

[20]  Robert E. W. Hancock,et al.  Multifunctional cationic host defence peptides and their clinical applications , 2011, Cellular and Molecular Life Sciences.

[21]  R. Epand,et al.  Bacterial membrane lipids in the action of antimicrobial agents , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[22]  K. Chou,et al.  Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods , 2011, PloS one.

[23]  O. Franco Peptide promiscuity: An evolutionary concept for plant defense , 2011, FEBS letters.

[24]  R. Hodges,et al.  Rational Design of α‐Helical Antimicrobial Peptides to Target Gram‐negative Pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of Charge, ‘Specificity Determinants,’ Total Hydrophobicity, Hydrophobe Type and Location as Design Parameters to Improve the Therapeutic Ratio , 2011, Chemical biology & drug design.

[25]  Orlando L. Sánchez-Muñoz,et al.  A lipocentric view of peptide-induced pores , 2011, European Biophysics Journal.

[26]  Shuguang Zhang,et al.  Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. , 2011, Biomaterials.

[27]  Y. Kaznessis,et al.  Computational studies of protegrin antimicrobial peptides: A review , 2011, Peptides.

[28]  Bono Lučić,et al.  Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides , 2011, European Biophysics Journal.

[29]  H. Jenssen Descriptors for antimicrobial peptides , 2011, Expert opinion on drug discovery.

[30]  H. Won,et al.  De novo generation of short antimicrobial peptides with simple amino acid composition , 2011, Regulatory Peptides.

[31]  William C. Wimley,et al.  Antimicrobial Peptides: Successes, Challenges and Unanswered Questions , 2011, The Journal of Membrane Biology.

[32]  David A. Leigh,et al.  Cover Picture: Light‐Driven Transport of a Molecular Walker in Either Direction along a Molecular Track (Angew. Chem. Int. Ed. 1/2011) , 2011 .

[33]  C. Fjell,et al.  Optimization of Antibacterial Peptides by Genetic Algorithms and Cheminformatics , 2011, Chemical biology & drug design.

[34]  Markus Hartenfeller,et al.  De novo drug design. , 2010, Methods in molecular biology.

[35]  S. Onaizi,et al.  Tethering antimicrobial peptides: current status and potential challenges. , 2011, Biotechnology advances.

[36]  Alexander Tropsha,et al.  Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design. , 2011, Methods in molecular biology.

[37]  Joe Zhongxiang Zhou,et al.  Chemoinformatics and library design. , 2011, Methods in molecular biology.

[38]  Jody M Mason,et al.  Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. , 2010, Future medicinal chemistry.

[39]  Pu Liu,et al.  Stochastic Proximity Embedding: Methods and Applications , 2010, Molecular informatics.

[40]  W. Fenical,et al.  Antibacterials from the sea. , 2010, Chemistry.

[41]  Guangshun Wang,et al.  Antimicrobial peptides: discovery, design and novel therapeutic strategies. , 2010 .

[42]  G. Hong,et al.  Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides. , 2010, The journal of physical chemistry. B.

[43]  Jyoti Pande,et al.  Phage display: concept, innovations, applications and future. , 2010, Biotechnology advances.

[44]  Syma Khalid,et al.  Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations. , 2010, Protein and peptide letters.

[45]  William C Wimley,et al.  Describing the mechanism of antimicrobial peptide action with the interfacial activity model. , 2010, ACS chemical biology.

[46]  Riadh Hammami,et al.  Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. , 2010, Drug discovery today.

[47]  Søren Neve,et al.  Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II , 2010, Science.

[48]  S. Galdino,et al.  Overview on plant antimicrobial peptides. , 2010, Current protein & peptide science.

[49]  G. Schneider,et al.  Concepts and applications of "natural computing" techniques in de novo drug and peptide design. , 2010, Current pharmaceutical design.

[50]  Yibing Huang,et al.  Alpha-helical cationic antimicrobial peptides: relationships of structure and function , 2010, Protein & Cell.

[51]  Shreyas Karnik,et al.  CAMP: a useful resource for research on antimicrobial peptides , 2009, Nucleic Acids Res..

[52]  R. Hancock,et al.  Fine tuning host responses in the face of infection: Emerging roles and clinical applications of host defence peptides , 2010 .

[53]  Y. Kliger Computational approaches to therapeutic peptide discovery. , 2010, Biopolymers.

[54]  Matthias Rarey,et al.  LoFT: Similarity-Driven Multiobjective Focused Library Design , 2010, J. Chem. Inf. Model..

[55]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[56]  Luis G Valerio,et al.  In silico toxicology for the pharmaceutical sciences. , 2009, Toxicology and applied pharmacology.

[57]  Davor Juretic,et al.  Computational Design of Highly Selective Antimicrobial Peptides , 2009, J. Chem. Inf. Model..

[58]  P. Nibbering,et al.  Antimicrobial Peptide hLF1-11 Directs Granulocyte-Macrophage Colony-Stimulating Factor-Driven Monocyte Differentiation toward Macrophages with Enhanced Recognition and Clearance of Pathogens , 2009, Antimicrobial Agents and Chemotherapy.

[59]  Chihae Yang,et al.  Computational Toxicology Approaches at the US Food and Drug Administration a , 2009, Alternatives to laboratory animals : ATLA.

[60]  P. Wipf,et al.  Peptide-Like Molecules (PLMs): A Journey from Peptide Bond Isosteres to Gramicidin S Mimetics and Mitochondrial Targeting Agents. , 2009, Chimia.

[61]  Thierry Langer,et al.  Hit finding: towards 'smarter' approaches. , 2009, Current opinion in pharmacology.

[62]  Yung Chang,et al.  Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. , 2009, Journal of molecular biology.

[63]  J. Donnelly,et al.  Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11) , 2009, BMC medicine.

[64]  L. Foster,et al.  Intracellular Receptor for Human Host Defense Peptide LL-37 in Monocytes1 , 2009, The Journal of Immunology.

[65]  Katsumi Matsuzaki,et al.  Control of cell selectivity of antimicrobial peptides. , 2009, Biochimica et biophysica acta.

[66]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.

[67]  Ramesh Rathinakumar,et al.  Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. , 2009, Journal of the American Chemical Society.

[68]  C. Vogelmeier,et al.  The antimicrobial peptide LL‐37 modulates the inflammatory and host defense response of human neutrophils , 2009, European journal of immunology.

[69]  W. Shi,et al.  Design and activity of a 'dual-targeted' antimicrobial peptide. , 2009, International journal of antimicrobial agents.

[70]  K. Lohner New strategies for novel antibiotics: peptides targeting bacterial cell membranes. , 2009, General physiology and biophysics.

[71]  C. Fjell,et al.  Identification of novel antibacterial peptides by chemoinformatics and machine learning. , 2009, Journal of medicinal chemistry.

[72]  Sean Ekins,et al.  The importance of discerning shape in molecular pharmacology. , 2009, Trends in pharmacological sciences.

[73]  M. N. Melo,et al.  Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations , 2009, Nature Reviews Microbiology.

[74]  G. Zhanel,et al.  Antibacterial Activity of Ultrashort Cationic Lipo-β-Peptides , 2009, Antimicrobial Agents and Chemotherapy.

[75]  C. Fjell,et al.  Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. , 2009, Chemistry & biology.

[76]  Constantinos S. Pattichis,et al.  De Novo Drug Design Using Multiobjective Evolutionary Graphs , 2009, J. Chem. Inf. Model..

[77]  Artem Cherkasov,et al.  Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. , 2009, ACS chemical biology.

[78]  K. Chou,et al.  Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. , 2009, Bioorganic & medicinal chemistry.

[79]  Bin Chen,et al.  Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis , 2009, J. Chem. Inf. Model..

[80]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[81]  Gisbert Schneider,et al.  Molecular design . Concepts and applications , 2009 .

[82]  Gisbert Schneider,et al.  Adaptive combinatorial design of focused compound libraries. , 2009, Methods in molecular biology.

[83]  G. Schneider,et al.  Voyages to the (un)known: adaptive design of bioactive compounds. , 2009, Trends in biotechnology.

[84]  K V Balakin,et al.  Compound library design for target families. , 2009, Methods in molecular biology.

[85]  R. Volkmer,et al.  Exploring and profiling protein function with peptide arrays. , 2009, Methods in molecular biology.

[86]  Benjamin A Lipsky,et al.  Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[87]  Walter Filgueira de Azevedo,et al.  Drug-binding databases. , 2008, Current drug targets.

[88]  Maykel Pérez González,et al.  Variable selection methods in QSAR: an overview. , 2008, Current topics in medicinal chemistry.

[89]  Walter Filgueira de Azevedo,et al.  Computational methods for calculation of ligand-binding affinity. , 2008, Current drug targets.

[90]  Artem Cherkasov,et al.  Identification of novel host defense peptides and the absence of α‐defensins in the bovine genome , 2008, Proteins.

[91]  M. Nakazato,et al.  Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. , 2008, Pulmonary pharmacology & therapeutics.

[92]  Durba Sengupta,et al.  Toroidal pores formed by antimicrobial peptides show significant disorder. , 2008, Biochimica et biophysica acta.

[93]  Menotti Ruvo,et al.  Past and future perspectives of synthetic peptide libraries. , 2008, Current protein & peptide science.

[94]  Valerie J Gillet,et al.  New directions in library design and analysis. , 2008, Current opinion in chemical biology.

[95]  Carlos A.M. Fraga,et al.  Molecular Design: Concepts and Applications , 2008 .

[96]  Masato Saito,et al.  Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. , 2008, Analytical chemistry.

[97]  Y. Shai,et al.  Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an alpha-helical 'sequence template'. , 2008, The Journal of antimicrobial chemotherapy.

[98]  D. Hoskin,et al.  Studies on anticancer activities of antimicrobial peptides. , 2008, Biochimica et biophysica acta.

[99]  Wolfram Gronwald,et al.  Evolutionary Pareto-optimization of stably folding peptides , 2008, BMC Bioinformatics.

[100]  Markus A Lill,et al.  Multi-dimensional QSAR in drug discovery. , 2007, Drug discovery today.

[101]  E. Winzeler,et al.  Genomics, systems biology and drug development for infectious diseases. , 2007, Molecular bioSystems.

[102]  Ersin Emre Oren,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm436 Sequence analysis , 2022 .

[103]  Christian Kandt,et al.  Computer simulation of antimicrobial peptides. , 2007, Current medicinal chemistry.

[104]  John C Dearden,et al.  In silico prediction of ADMET properties: how far have we come? , 2007, Expert opinion on drug metabolism & toxicology.

[105]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[106]  D. Rognan Chemogenomic approaches to rational drug design , 2007, British journal of pharmacology.

[107]  Floyd E Romesberg,et al.  Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation , 2007, Nature Chemical Biology.

[108]  B Testa,et al.  In silico pharmacology for drug discovery: applications to targets and beyond , 2007, British journal of pharmacology.

[109]  Artem Cherkasov,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm068 Databases and ontologies AMPer: a database and an automated discovery tool for antimicrobial peptides , 2022 .

[110]  Gisbert Schneider,et al.  Design of MHC I stabilizing peptides by agent-based exploration of sequence space. , 2007, Protein engineering, design & selection : PEDS.

[111]  Xavier Llorà,et al.  Evolutionary computation and multimodal search: A good combination to tackle molecular diversity in the field of peptide design , 2007, Molecular Diversity.

[112]  Kotaro Terada,et al.  In silico panning for a non-competitive peptide inhibitor , 2007, BMC Bioinformatics.

[113]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[114]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[115]  Thomas Engel,et al.  Basic Overview of Chemoinformatics , 2006, J. Chem. Inf. Model..

[116]  A. Waring,et al.  Membrane-dependent oligomeric structure and pore formation of a β-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR , 2006, Proceedings of the National Academy of Sciences.

[117]  Gregory Stephanopoulos,et al.  A linguistic model for the rational design of antimicrobial peptides , 2006, Nature.

[118]  Kai Hilpert,et al.  Sequence requirements and an optimization strategy for short antimicrobial peptides. , 2006, Chemistry & biology.

[119]  Vladimir Frecer,et al.  QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. , 2006, Bioorganic & medicinal chemistry.

[120]  Huey W. Huang Molecular mechanism of antimicrobial peptides: the origin of cooperativity. , 2006, Biochimica et biophysica acta.

[121]  H. Sahl,et al.  The co-evolution of host cationic antimicrobial peptides and microbial resistance , 2006, Nature Reviews Microbiology.

[122]  Y. Ishitsuka,et al.  Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. , 2006, Biophysical journal.

[123]  Philipp Limbourg,et al.  A Multiobjective Evolutionary Method for the Design of Peptidic Mimotopes , 2006, J. Comput. Biol..

[124]  P. Bulet,et al.  Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an α‐helical conformation , 2006, Biopolymers.

[125]  Xavier Llorà,et al.  Evolutionary algorithms and de novo peptide design , 2006, Soft Comput..

[126]  Kristopher Hall,et al.  Surface plasmon resonance analysis of antimicrobial peptide-membrane interactions: affinity & mechanism of action , 2003, Letters in Peptide Science.

[127]  R. Hyzy,et al.  A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. , 2006, American journal of respiratory and critical care medicine.

[128]  V. Nizet Antimicrobial peptide resistance mechanisms of human bacterial pathogens. , 2006, Current issues in molecular biology.

[129]  Graham Bell,et al.  Experimental evolution of resistance to an antimicrobial peptide , 2006, Proceedings of the Royal Society B: Biological Sciences.

[130]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[131]  Xavier Llorà,et al.  ENPDA: an evolutionary structure-based de novo peptide design algorithm , 2005, J. Comput. Aided Mol. Des..

[132]  H. Khandelia,et al.  Molecular dynamics simulations of helical antimicrobial peptides in SDS micelles: What do point mutations achieve? , 2005, Peptides.

[133]  Ű. Langel,et al.  Cell-penetrating peptides: mechanisms and applications. , 2005, Current pharmaceutical design.

[134]  C. Hawkey,et al.  Rdp58 Is a Novel and Potentially Effective Oral Therapy for Ulcerative Colitis , 2005, Inflammatory bowel diseases.

[135]  Kai Hilpert,et al.  High-throughput generation of small antibacterial peptides with improved activity , 2005, Nature Biotechnology.

[136]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[137]  M. Zanetti The role of cathelicidins in the innate host defenses of mammals. , 2005, Current issues in molecular biology.

[138]  I. Radzishevsky,et al.  Effects of Acyl versus Aminoacyl Conjugation on the Properties of Antimicrobial Peptides , 2005, Antimicrobial Agents and Chemotherapy.

[139]  Walters Wp,et al.  Feature selection in quantitative structure-activity relationships. , 2005 .

[140]  Shawn Lewenza,et al.  Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. , 2005, Genome research.

[141]  D. Davidson,et al.  Impact of LL‐37 on anti‐infective immunity , 2005, Journal of leukocyte biology.

[142]  John A. Robinson,et al.  Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. , 2005, Bioorganic & medicinal chemistry.

[143]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[144]  Håvard Jenssen,et al.  Modelling of anti‐HSV activity of lactoferricin analogues using amino acid descriptors , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[145]  Y. Kaznessis,et al.  Protegrin structure–activity relationships: using homology models of synthetic sequences to determine structural characteristics important for activity , 2005, Peptides.

[146]  Michael Cascio,et al.  De Novo Generation of Cationic Antimicrobial Peptides: Influence of Length and Tryptophan Substitution on Antimicrobial Activity , 2005, Antimicrobial Agents and Chemotherapy.

[147]  E. Romanowski,et al.  A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs , 2005, Current eye research.

[148]  R. Hancock,et al.  Interaction and Cellular Localization of the Human Host Defense Peptide LL-37 with Lung Epithelial Cells , 2005, Infection and Immunity.

[149]  Nuttall Experimente über die bacterienfeindlichen Einflüsse des thierischen Körpers , 1888, Zeitschrift für Hygiene.

[150]  W Patrick Walters,et al.  Feature selection in quantitative structure-activity relationships. , 2005, Current opinion in drug discovery & development.

[151]  B. Ho,et al.  De Novo Design of Potent Antimicrobial Peptides , 2004, Antimicrobial Agents and Chemotherapy.

[152]  J. Svendsen,et al.  Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins , 2004, Journal of peptide science : an official publication of the European Peptide Society.

[153]  T. Fleming,et al.  A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. , 2004, Leukemia research.

[154]  R. Hancock,et al.  Structure-activity relationships for the beta-hairpin cationic antimicrobial peptide polyphemusin I. , 2004, Biochimica et biophysica acta.

[155]  E. Eklund,et al.  The Human Antimicrobial Peptide LL-37 Transfers Extracellular DNA Plasmid to the Nuclear Compartment of Mammalian Cells via Lipid Rafts and Proteoglycan-dependent Endocytosis* , 2004, Journal of Biological Chemistry.

[156]  G. Bemis,et al.  BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. , 2004, Journal of medicinal chemistry.

[157]  Y. Shai,et al.  A New Group of Antifungal and Antibacterial Lipopeptides Derived from Non-membrane Active Peptides Conjugated to Palmitic Acid* , 2004, Journal of Biological Chemistry.

[158]  John L. Klepeis,et al.  Design of peptide analogues with improved activity using a novel de novo protein design approach , 2004 .

[159]  A. Garden,et al.  A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. , 2004, International journal of radiation oncology, biology, physics.

[160]  Dimitris K. Agrafiotis,et al.  Multiobjective optimization of combinatorial libraries , 2002, J. Comput. Aided Mol. Des..

[161]  Gisbert Schneider,et al.  Development of simple fitness landscapes for peptides by artificial neural filter systems , 1995, Biological Cybernetics.

[162]  R. Lehrer,et al.  Primate defensins , 2004, Nature Reviews Microbiology.

[163]  Tin Wee Tan,et al.  ANTIMIC: a database of antimicrobial sequences , 2004, Nucleic Acids Res..

[164]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[165]  R. Hancock,et al.  Structure-based design of an indolicidin peptide analogue with increased protease stability. , 2003, Biochemistry.

[166]  R. Hancock,et al.  The relationship between peptide structure and antibacterial activity , 2003, Peptides.

[167]  H. G. Boman,et al.  Antibacterial peptides: basic facts and emerging concepts , 2003, Journal of internal medicine.

[168]  H. van de Waterbeemd,et al.  ADMET in silico modelling: towards prediction paradise? , 2003, Nature reviews. Drug discovery.

[169]  A. Prochiantz,et al.  Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. , 2003, Nucleic acids research.

[170]  C. di Loreto,et al.  Inducible expression of an antimicrobial peptide of the innate immunity in polymorphonuclear leukocytes , 2002, Journal of leukocyte biology.

[171]  R. Hancock,et al.  A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. , 2002, Journal of pharmaceutical sciences.

[172]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[173]  T. Ganz,et al.  Cathelicidins: a family of endogenous antimicrobial peptides , 2002, Current opinion in hematology.

[174]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[175]  A. Waring,et al.  The Role of Defensins in Lung Biology and Therapy , 2002, American journal of respiratory medicine : drugs, devices, and other interventions.

[176]  Gisbert Schneider,et al.  Virtual screening and fast automated docking methods. , 2002, Drug discovery today.

[177]  R. Hancock,et al.  Structure and Mechanism of Action of an Indolicidin Peptide Derivative with Improved Activity against Gram-positive Bacteria* , 2001, The Journal of Biological Chemistry.

[178]  J. Foster Computational genetics: Evolutionary computation , 2001, Nature Reviews Genetics.

[179]  J. Svendsen,et al.  Increased antibacterial activity of 15-residue murine lactoferricin derivatives. , 2001, The journal of peptide research : official journal of the American Peptide Society.

[180]  J. Svendsen,et al.  Antibiotic activity of pentadecapeptides modelled from amino acid descriptors , 2001, Journal of peptide science : an official publication of the European Peptide Society.

[181]  R. Hancock,et al.  Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. , 2000, Biochemistry.

[182]  R. Hancock Cationic antimicrobial peptides: towards clinical applications , 2000, Expert opinion on investigational drugs.

[183]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[184]  H. G. Boman Innate immunity and the normal microflora , 2000, Immunological reviews.

[185]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[186]  H. Vogel,et al.  Diversity of antimicrobial peptides and their mechanisms of action. , 1999, Biochimica et biophysica acta.

[187]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[188]  A. Prochiantz,et al.  Homeodomain‐Derived Peptides: In and Out of the Cells , 1999, Annals of the New York Academy of Sciences.

[189]  B D Sykes,et al.  Dissociation of Antimicrobial and Hemolytic Activities in Cyclic Peptide Diastereomers by Systematic Alterations in Amphipathicity* , 1999, The Journal of Biological Chemistry.

[190]  Robert E. W. Hancock,et al.  Improved Derivatives of Bactenecin, a Cyclic Dodecameric Antimicrobial Cationic Peptide , 1999, Antimicrobial Agents and Chemotherapy.

[191]  G Schneider,et al.  Artificial neural networks for computer-based molecular design. , 1998, Progress in biophysics and molecular biology.

[192]  G. Schneider,et al.  Peptide design by artificial neural networks and computer-based evolutionary search. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[193]  G. Schneider,et al.  Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites. , 1998, Biochemistry.

[194]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[195]  D. Eisenberg,et al.  Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. , 1996, Chemistry & biology.

[196]  M. Kanehisa,et al.  Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. , 1996, Protein engineering.

[197]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[198]  Arantxa Etxeverria The Origins of Order , 1993 .

[199]  Gisbert Schneider,et al.  Artificial neural networks and simulated molecular evolution are potential tools for sequence-oriented protein design , 1994, Comput. Appl. Biosci..

[200]  Gisbert Schneider,et al.  Concepts in Protein Engineering and Design: An Introduction , 1994 .

[201]  C. Zhao,et al.  Identification of a new member of the protegrin family by cDNA cloning , 1994, FEBS letters.

[202]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[203]  G Schneider,et al.  The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. , 1994, Biophysical journal.

[204]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[205]  R A Houghten,et al.  Design of model amphipathic peptides having potent antimicrobial activities. , 1992, Biochemistry.

[206]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[207]  Michael Zasloff Antibiotic peptides as mediators of innate immunity , 1992, Current Biology.

[208]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[209]  J. Spitznagel,et al.  Antibiotic proteins of human neutrophils. , 1990, The Journal of clinical investigation.

[210]  M. Zasloff,et al.  Magainins: a new family of membrane-active host defense peptides. , 1990, Biochemical pharmacology.

[211]  T. Yoneya,et al.  Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. , 1989, Journal of biochemistry.

[212]  S. Wold,et al.  Peptide quantitative structure-activity relationships, a multivariate approach. , 1987, Journal of medicinal chemistry.

[213]  D. Hultmark,et al.  Cell-free immunity in insects. , 1987, Annual review of microbiology.

[214]  R. B. Merrifield,et al.  N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. , 1985, Biochemistry.

[215]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[216]  R. B. Merrifield,et al.  Synthesis of the antibacterial peptide cecropin A (1-33). , 1982, Biochemistry.

[217]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[218]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[219]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[220]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[221]  R. Skarnes,et al.  Antimicrobial factors of normal tissues and fluids. , 1957, Bacteriological reviews.