A Krylov subspace projection method for simultaneous solution of Helmholtz problems at multiple frequencies

[1]  Peter M. Pinsky,et al.  On the implementation of the Dirichlet-to-Neumann radiation condition for iterative solution of the Helmholtz equation , 1998 .

[2]  A. Atalar,et al.  A circuit theoretical method for efficient finite element analysis of acoustical problems , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[3]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[4]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Marcus J. Grote,et al.  On nonreflecting boundary conditions , 1995 .

[6]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[7]  Guoliang Xu,et al.  Matrix padé approximation: definitions and properties , 1990 .

[8]  R. Freund,et al.  A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .

[9]  Robert J. Lee,et al.  Applying Padé via Lanczos to the finite element method for electromagnetic radiation problems , 2000 .

[10]  Daniel,et al.  The Nonsymmetric Lanczos Algorithm May 1990 and Controllability , 1999 .

[11]  A. Stray,et al.  Approximation and interpolation. , 1972 .

[12]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[13]  W. Gragg Matrix interpretations and applications of the continued fraction algorithm , 1974 .

[14]  Raj Mittra,et al.  Finite element solution of electromagnetic problems over a wide frequency range via the Padé approximation , 1999 .

[15]  M. M. Alaybeyi,et al.  AWE-Inspired , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[16]  Michel Rochette,et al.  Calculation of vibro-acoustic frequency response functions using a single frequency boundary element solution and a Pade expansion , 1999 .

[17]  P. Dooren,et al.  Asymptotic Waveform Evaluation via a Lanczos Method , 1994 .

[18]  Zhaojun Bai,et al.  Error Estimation of the Padé Approximation of Transfer Functions via the Lanczos Process , 1998 .

[19]  Roland W. Freund,et al.  A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..

[20]  L. Gaul,et al.  Numerical treatment of acoustic problems with the hybrid boundary element method , 2001 .

[21]  J. Z. Zhu,et al.  The finite element method , 1977 .

[22]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[23]  R. J. Astley,et al.  A Note on the Utility of a Wave Envelope Approach in Finite Element Duct Transmission Studies , 1981 .

[24]  J. Craggs Applied Mathematical Sciences , 1973 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  G. Kreisselmeier Adaptive control of a class of slowly time-varying plants , 1986 .

[27]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[28]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[29]  Isaac Harari,et al.  On non-reflecting boundary conditions in unbounded elastic solids , 1998 .

[30]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[31]  C. Farhat,et al.  A fast method for solving acoustic scattering problems in frequency bands , 2001 .

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  Ivo Babuška,et al.  A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems , 1998 .

[34]  M. Malhotra EFFICIENT COMPUTATION OF MULTI-FREQUENCY FAR-FIELD SOLUTIONS OF THE HELMHOLTZ EQUATION USING PADÉ APPROXIMATION , 2000 .

[35]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[36]  John L. Volakis,et al.  AWE implementation for electromagnetic FEM analysis , 1996 .

[37]  P. Pinsky,et al.  Application of Padé via Lanczos approximations for efficient multifrequency solution of Helmholtz problems. , 2003, The Journal of the Acoustical Society of America.

[38]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.