Comparing local search metaheuristics for the maximum diversity problem

The Maximum Diversity Problem (MDP) requires to extract a subset M of given cardinality from a set N, maximising the sum of the pair-wise diversities between the extracted elements. The MDP has recently been the subject of much research, and several sophisticated heuristics have been proposed to solve it. The present work compares four local search metaheuristics for the MDP, all based on the same Tabu Search procedure, with the aim to identify what additional elements provide the strongest improvement. The four metaheuristics are an Exploring Tabu Search, a Scatter Search, a Variable Neighbourhood Search and a simple Random Restart algorithm. All of them prove competitive with the best algorithms proposed in the literature. Quite surprisingly, the best ones are the simple Random Restart algorithm and a Variable Neighbourhood Search algorithm with an unusual parameter setting, which makes it quite close to random restart. Although this is probably related to the elementary structure of the MDP, it also suggests that, more often than expected, simpler algorithms might be better.

[1]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem , 1991 .

[2]  Micael Gallego,et al.  Hybrid heuristics for the maximum diversity problem , 2009, Comput. Optim. Appl..

[3]  Fred Glover,et al.  A discrete optimization model for preserving biological diversity , 1995 .

[4]  Luiz Satoru Ochi,et al.  Experimental Comparison of Greedy Randomized Adaptive Search Procedures for the Maximum Diversity Problem , 2004, WEA.

[5]  Gilbert Laporte,et al.  New Insertion and Postoptimization Procedures for the Traveling Salesman Problem , 1992, Oper. Res..

[6]  Roberto Cordone,et al.  Tabu Search versus GRASP for the maximum diversity problem , 2008, 4OR.

[7]  Aringhieri Roberto,et al.  An ant colony optimization approach to the Maximum Diversity Problem , 2007 .

[8]  Bahram Alidaee,et al.  Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search (Operations Research/Computer Science Interfaces Series) , 2005 .

[9]  Micael Gallego,et al.  A branch and bound algorithm for the maximum diversity problem , 2010, Eur. J. Oper. Res..

[10]  Luiz Satoru Ochi,et al.  New heuristics for the maximum diversity problem , 2007, J. Heuristics.

[11]  Gintaras Palubeckis,et al.  Iterated tabu search for the maximum diversity problem , 2007, Appl. Math. Comput..

[12]  Mauricio G. C. Resende,et al.  Grasp: An Annotated Bibliography , 2002 .

[13]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[14]  Mauro Dell'Amico,et al.  Solution of the SONET Ring Assignment Problem with Capacity Constraints , 2005 .

[15]  Mauro Dell'Amico,et al.  Solution of large weighted equicut problems , 1998, Eur. J. Oper. Res..

[16]  William H. Press,et al.  Numerical recipes in C , 2002 .

[17]  S. Martins,et al.  MIC 2003 : The Fifth Metaheuristics International Conference ? ?-1 GRASP for the maximum diversity problem , 2005 .

[18]  F. Glover,et al.  Analyzing and Modeling the Maximum Diversity Problem by Zero‐One Programming* , 1993 .

[19]  Abraham Duarte,et al.  Tabu search and GRASP for the maximum diversity problem , 2007, Eur. J. Oper. Res..

[20]  R. Aringhieri Tabu Search vs . GRASP for the Maximum Diversity Problem , 2005 .

[21]  Roberto Aringhieri,et al.  Metaheuristics for a vehicle routing problem on bipartite graphs with distance constraints , 2005 .

[22]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[23]  C. Ribeiro,et al.  Essays and Surveys in Metaheuristics , 2002, Operations Research/Computer Science Interfaces Series.

[24]  Luciano Tarricone,et al.  A new matrix bandwidth reduction algorithm , 1998, Oper. Res. Lett..

[25]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[26]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[27]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[28]  Jay B. Ghosh,et al.  Computational aspects of the maximum diversity problem , 1996, Oper. Res. Lett..

[29]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[30]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[31]  Nenad Mladenovic,et al.  Variable neighborhood search for the heaviest k-subgraph , 2009, Comput. Oper. Res..

[32]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[33]  Roberto Cordone,et al.  Better and faster solutions for the maximum diversity problem , 2006 .

[34]  Éva Tardos,et al.  Algorithm design , 2005 .

[35]  Roberto Cordone,et al.  A Heuristic for the Vehicle Routing Problem with Time Windows , 2001, J. Heuristics.

[36]  Roberto Cordone,et al.  Optimal results and tight bounds for the maximum diversity problem , 2009 .

[37]  Manuel Laguna,et al.  Lessons from Applying and Experimenting with Scatter Search , 2005 .

[38]  Mauro Dell'Amico,et al.  Comparing Metaheuristic Algorithms for Sonet Network Design Problems , 2005, J. Heuristics.

[39]  R. R. Weitz,et al.  An empirical comparison of heuristic methods for creating maximally diverse groups , 1998, J. Oper. Res. Soc..

[40]  Alexandre Plastino,et al.  A Hybrid GRASP with Data Mining for the Maximum Diversity Problem , 2005, Hybrid Metaheuristics.

[41]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..