Efficient unstructured quadrilateral mesh generation

This work is devoted to the description of an algorithm for automatic quadrilateral mesh generation. The technique is based on a recursive decomposition of the domain into quadrilateral elements. This automatically generates meshes composed entirely by quadrilaterals over complex geometries (there is no need for a previous step where triangles are generated). A background mesh with the desired element sizes allows to obtain the preferred sizes anywhere in the domain. The final mesh can be viewed as the optimal one given the objective function is defined. The recursive algorithm induces an efficient data structure which optimizes the computer cost. Several examples are presented to show the efficiency of this algorithm. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  Richard H. Gallagher,et al.  A general two‐dimensional, graphical finite element preprocessor utilizing discrete transfinite mappings , 1981 .

[2]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[3]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[4]  Noboru Kikuchi,et al.  Adaptive grid-design methods for finite delement analysis , 1986 .

[5]  S. Giuliani An algorithm for continuous rezoning of the hydrodynamic grid in Arbitrary Lagrangian-Eulerian computer codes , 1982 .

[6]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[7]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[8]  C. Lee,et al.  A new scheme for the generation of a graded quadrilateral mesh , 1994 .

[9]  Pedro Díez,et al.  Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .

[10]  B Wördenweber Finite element mesh generation , 1984 .

[11]  Josep Sarrate,et al.  An improved algorithm to smooth graded quadrilateral meshes preserving the prescribed element size , 2001 .

[12]  Pedro Díez,et al.  Adaptivity based on error estimation for viscoplastic softening materials , 2000 .

[13]  Ernst Rank,et al.  Adaptive mesh generation and transformation of triangular to quadrilateral meshes , 1993 .

[14]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[15]  P. R. Brown A non-interactive method for the automatic generation of finite element meshes using the schwarz-christoffel transformation , 1981 .

[16]  S. Rebay Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm , 1993 .

[17]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[18]  Roland W. Lewis,et al.  Three-dimensional unstructured mesh generation: Part 2. Surface meshes , 1996 .

[19]  W. Thacker,et al.  A method for automating the construction of irregular computational grids for storm surge forecast models , 1980 .

[20]  Pedro Díez,et al.  A posteriori error estimation for standard finite element analysis , 1998 .

[21]  Nils-Erik Wiberg,et al.  Two‐dimensional mesh generation, adaptive remeshing and refinement , 1990 .

[22]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[23]  Roland W. Lewis,et al.  Three-dimensional unstructured mesh generation: Part 1. Fundamental aspects of triangulation and point creation , 1996 .

[24]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[25]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[26]  R. Lewis,et al.  Three-dimensional unstructured mesh generation: Part 3. Volume meshes , 1996 .

[27]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[28]  H. A. ElMaraghy,et al.  An expert system for forming quadrilateral finite elements , 1990 .

[29]  J. F. Thompson,et al.  A general three-dimensional elliptic grid generation system on a composite block structure , 1987 .

[30]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[31]  Rainald Löhner,et al.  Three-dimensional grid generation by the advancing front method , 1988 .

[32]  J. Cavendish Automatic triangulation of arbitrary planar domains for the finite element method , 1974 .

[33]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[34]  Jeffrey A. Talbert,et al.  Development of an automatic, two‐dimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition , 1990 .

[35]  O. C. Zienkiewicz,et al.  An automatic mesh generation scheme for plane and curved surfaces by ‘isoparametric’ co‐ordinates , 1971 .

[36]  L. Herrmann Laplacian-Isoparametric Grid Generation Scheme , 1976 .

[37]  Patrick M. Knupp,et al.  A robust elliptic grid generator , 1992 .