A Simple Method for Computing Minkowski Sum Boundary in 3D Using Collision Detection
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Computing convolutions by reciprocal search , 1986, SCG '86.
[2] Yossi Azar,et al. Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings , 2006, ESA.
[3] Peter Hachenberger. Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra in Convex Pieces , 2007, ESA.
[4] PeternellMartin,et al. Minkowski sum boundary surfaces of 3D-objects , 2007 .
[5] Peter Hachenberger,et al. Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra into Convex Pieces , 2007, Algorithmica.
[6] Valerio Pascucci,et al. Genus Oblivious Cross Parameterization: Robust Topological Management of Inter-Surface Maps , 2007 .
[7] Mike S. Paterson. Algorithms - ESA 2000 , 2003, Lecture Notes in Computer Science.
[8] Dan Halperin,et al. Exact and efficient construction of Minkowski sums of convex polyhedra with applications , 2006, Comput. Aided Des..
[9] Tomás Lozano-Pérez,et al. Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.
[10] Peter Gritzmann,et al. Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..
[11] Dinesh Manocha,et al. OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.
[12] Chandrajit L. Bajaj,et al. Convex Decomposition of Polyhedra and Robustness , 1992, SIAM J. Comput..
[13] Jyh-Ming Lien,et al. Hybrid Motion Planning Using Minkowski Sums , 2008, Robotics: Science and Systems.
[14] Michael Hoffmann,et al. Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings , 2007, ESA.
[15] Dinesh Manocha,et al. Accurate Minkowski sum approximation of polyhedral models , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..
[16] Dan Halperin,et al. Robust and Efficient Construction of Planar Minkowski Sums , 2000, EuroCG.
[17] Jyh-Ming Lien. Point-Based Minkowski Sum Boundary , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).
[18] Leonidas J. Guibas,et al. A kinetic framework for computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[19] Tibor Steiner,et al. Minkowski sum boundary surfaces of 3D-objects , 2007, Graph. Model..
[20] Pankaj K. Agarwal,et al. Polygon decomposition for efficient construction of Minkowski sums , 2000, Comput. Geom..
[21] Pijush K. Ghosh,et al. A unified computational framework for Minkowski operations , 1993, Comput. Graph..
[22] Dan Halperin,et al. Robust Geometric Computing in Motion , 2002, Int. J. Robotics Res..
[23] Ron Wein. Exact and Efficient Construction of Planar Minkowski Sums Using the Convolution Method , 2006, ESA.
[24] Sigal Raab,et al. Controlled perturbation for arrangements of polyhedral surfaces with application to swept volumes , 1999, SCG '99.
[25] Komei Fukuda,et al. From the zonotope construction to the Minkowski addition of convex polytopes , 2004, J. Symb. Comput..
[26] Jarek Rossignac,et al. Solid-interpolating deformations: Construction and animation of PIPs , 1991, Comput. Graph..