Noncommutative Polynomials Describing Convex Sets

The free closed semialgebraic set $${\mathcal {D}}_f$$ D f determined by a hermitian noncommutative polynomial $$f\in {\text {M}}_{{\delta }}({\mathbb {C}}\mathop {<}x,x^*\mathop {>})$$ f ∈ M δ ( C < x , x ∗ > ) is the closure of the connected component of $$\{(X,X^*)\mid f(X,X^*)\succ 0\}$$ { ( X , X ∗ ) ∣ f ( X , X ∗ ) ≻ 0 } containing the origin. When L is a hermitian monic linear pencil, the free closed semialgebraic set $${\mathcal {D}}_L$$ D L is the feasible set of the linear matrix inequality $$L(X,X^*)\succeq 0$$ L ( X , X ∗ ) ⪰ 0 and is known as a free spectrahedron. Evidently these are convex and it is well known that a free closed semialgebraic set is convex if and only it is a free spectrahedron. The main result of this paper solves the basic problem of determining those f for which $${\mathcal {D}}_f$$ D f is convex. The solution leads to an efficient algorithm that not only determines if $${\mathcal {D}}_f$$ D f is convex, but if so, produces a minimal hermitian monic pencil L such that $${\mathcal {D}}_f={\mathcal {D}}_L$$ D f = D L . Of independent interest is a subalgorithm based on a Nichtsingulärstellensatz presented here: given a linear pencil $${\widetilde{L}}$$ L ~ and a hermitian monic pencil L , it determines if $${\widetilde{L}}$$ L ~ takes invertible values on the interior of $${\mathcal {D}}_L$$ D L . Finally, it is shown that if $${\mathcal {D}}_f$$ D f is convex for an irreducible hermitian $$f\in {\mathbb {C}}\mathop {<}x,x^*\mathop {>}$$ f ∈ C < x , x ∗ > , then f has degree at most two, and arises as the Schur complement of an L such that $${\mathcal {D}}_f={\mathcal {D}}_L$$ D f = D L .

[1]  Marek Karpinski,et al.  Polynomial time algorithms for modules over finite dimensional algebras , 1997, ISSAC.

[2]  Lajos Rónyai,et al.  Polynomial time solutions of some problems of computational algebra , 1985, STOC '85.

[3]  J. Volčič,et al.  Matrix coefficient realization theory of noncommutative rational functions. , 2015, 1505.07472.

[4]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[5]  Rekha R. Thomas,et al.  Positive semidefinite rank , 2014, Math. Program..

[6]  Positivstellensätze for noncommutative rational expressions , 2017, 1703.06951.

[7]  Petter Brändén Obstructions to determinantal representability , 2011 .

[8]  Igor Klep,et al.  Regular and positive noncommutative rational functions , 2016, J. Lond. Math. Soc..

[9]  A. Lewis,et al.  The lax conjecture is true , 2003, math/0304104.

[10]  J. Helton,et al.  Noncommutative polynomials nonnegative on a variety intersect a convex set , 2013, 1308.0051.

[11]  J. Conway,et al.  Surveys of some recent results in operator theory , 1988 .

[12]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[13]  Petter Brand'en,et al.  Obstructions to determinantal representability , 2010, 1004.1382.

[14]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[15]  Ettore Fornasini,et al.  Doubly-indexed dynamical systems: State-space models and structural properties , 1978, Mathematical systems theory.

[16]  Tim Netzer,et al.  Polynomials with and without determinantal representations , 2010, 1008.1931.

[17]  P. Cohn Free Ideal Rings and Localization in General Rings: Subject Index , 2006 .

[18]  J. Helton,et al.  Bianalytic maps between free spectrahedra , 2016, 1604.04952.

[19]  J. William Helton,et al.  The Tracial Hahn-Banach Theorem, Polar Duals, Matrix Convex Sets, and Projections of Free Spectrahedra , 2014, 1407.8198.

[20]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[21]  J. William Helton,et al.  Every convex free basic semi-algebraic set has an LMI representation , 2012 .

[22]  J. William Helton,et al.  The matricial relaxation of a linear matrix inequality , 2010, Math. Program..

[23]  P. Cohn Free Ideal Rings and Localization in General Rings , 2006 .

[24]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[25]  I. Klep,et al.  Free loci of matrix pencils and domains of noncommutative rational functions , 2015, 1512.02648.

[26]  M. Brešar Introduction to Noncommutative Algebra , 2014 .

[27]  V. Vinnikov Self-adjoint determinantal representations of real plane curves , 1993 .

[28]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[29]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[31]  Israel Gohberg,et al.  Factorization of Matrix and Operator Functions: The State Space Method , 2007 .

[32]  James Freitag,et al.  Bertini theorems for differential algebraic geometry , 2012, 1211.0972.

[33]  Cynthia Vinzant,et al.  Determinantal representations of hyperbolic plane curves: An elementary approach , 2012, J. Symb. Comput..

[34]  Gábor Ivanyos,et al.  Finding the radical of an algebra of linear transformations , 1997 .

[35]  Tobias Fritz,et al.  Spectrahedral Containment and Operator Systems with Finite-Dimensional Realization , 2017, SIAM J. Appl. Algebra Geom..

[36]  Cynthia Vinzant,et al.  What is... a spectrahedron , 2014 .

[37]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[38]  Joseph A. Ball,et al.  Structured Noncommutative Multidimensional Linear Systems , 2005, SIAM J. Control. Optim..

[39]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[40]  Thorsten Theobald,et al.  A Semidefinite Hierarchy for Containment of Spectrahedra , 2013, SIAM J. Optim..

[41]  K. Davidson,et al.  Dilations, inclusions of matrix convex sets, and completely positive maps , 2016, 1601.07993.

[42]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[43]  H. Woerdeman,et al.  Matrix-valued Hermitian Positivstellensatz, Lurking Contractions, and Contractive Determinantal Representations of Stable Polynomials , 2015, 1501.05527.

[44]  J. Helton,et al.  Geometry of free loci and factorization of noncommutative polynomials , 2017, Advances in Mathematics.

[45]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Noncommutative rational functions, their difference-differential calculus and realizations , 2010, Multidimens. Syst. Signal Process..

[46]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[47]  Jurij Volcic,et al.  Stable Noncommutative Polynomials and Their Determinantal Representations , 2018, SIAM J. Appl. Algebra Geom..

[48]  Arkadi Nemirovski,et al.  On Tractable Approximations of Uncertain Linear Matrix Inequalities Affected by Interval Uncertainty , 2002, SIAM J. Optim..

[49]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Singularities of rational functions and minimal factorizations: The noncommutative and the commutative setting , 2009 .

[50]  M. Fliess,et al.  Sur divers produits de séries formelles , 1974 .

[51]  Lajos Rónyai,et al.  Computing Levi Decompositions in Lie algebras , 1997, Applicable Algebra in Engineering, Communication and Computing.

[52]  Igor Klep,et al.  Optimization of Polynomials in Non-Commuting Variables , 2016 .

[53]  Jurij Volčič Free Bertini’s theorem and applications , 2019, Proceedings of the American Mathematical Society.

[54]  P. McMullen A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .

[55]  Wayne Eberly,et al.  Decompositions of algebras over ℝ and ℂ , 1991, computational complexity.

[56]  Monique Laurent,et al.  Conic Approach to Quantum Graph Parameters Using Linear Optimization Over the Completely Positive Semidefinite Cone , 2013, SIAM J. Optim..

[57]  J. Helton,et al.  Linear matrix inequality representation of sets , 2003, math/0306180.

[58]  J. William Helton,et al.  The convex Positivstellensatz in a free algebra , 2011, 1102.4859.

[59]  Tom-Lukas Kriel An Introduction to Matrix Convex Sets and Free Spectrahedra , 2016, Complex Analysis and Operator Theory.

[60]  J. Volčič,et al.  On domains of noncommutative rational functions , 2016 .

[61]  Monique Laurent,et al.  Optimization over polynomials: Selected topics , 2014 .

[62]  Rekha R. Thomas SPECTRAHEDRAL LIFTS OF CONVEX SETS , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[63]  V. Klee Separation properties of convex cones , 1955 .

[64]  I. Nechita,et al.  Joint measurability of quantum effects and the matrix diamond , 2018, Journal of Mathematical Physics.

[65]  J. William Helton,et al.  Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions , 2014, Memoirs of the American Mathematical Society.

[66]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[67]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[68]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .