From the Ginzburg-Landau Model to Vortex Lattice Problems

We introduce a “Coulombian renormalized energy” W which is a logarithmic type of interaction between points in the plane, computed by a “renormalization.” We prove various of its properties, such as the existence of minimizers, and show in particular, using results from number theory, that among lattice configurations the triangular lattice is the unique minimizer. Its minimization in general remains open.Our motivation is the study of minimizers of the two-dimensional Ginzburg-Landau energy with applied magnetic field, between the first and second critical fields Hc1 and Hc2. In that regime, minimizing configurations exhibit densely packed triangular vortex lattices, called Abrikosov lattices. We derive, in some asymptotic regime, W as a Γ-limit of the Ginzburg-Landau energy. More precisely we show that the vortices of minimizers of Ginzburg-Landau, blown-up at a suitable scale, converge to minimizers of W, thus providing a first rigorous hint at the Abrikosov lattice. This is a next order effect compared to the mean-field type results we previously established.The derivation of W uses energy methods: the framework of Γ-convergence, and an abstract scheme for obtaining lower bounds for “2-scale energies” via the ergodic theorem, that we introduce.

[1]  J. W. S. Cassels,et al.  On a problem of Rankin about the Epstein zeta-function , 1959, Proceedings of the Glasgow Mathematical Association.

[2]  R. Dougherty,et al.  Type II Superconductivity , 2012 .

[3]  N. Rivière Singular integrals and multiplier operators , 1971 .

[4]  Veikko Ennola,et al.  A lemma about the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.

[5]  Robert A. Rankin,et al.  A Minimum Problem for the Epstein Zeta-Function , 1953, Proceedings of the Glasgow Mathematical Association.

[6]  S. Serfaty,et al.  Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $$H_{{c}_{2}}$$ , 2007 .

[7]  D. Kinderlehrer,et al.  The Smoothness of Solutions to Nonlinear Variational Inequalities , 1974 .

[8]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.

[9]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[10]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[11]  S. Lang Introduction to Arakelov Theory , 1988 .

[12]  F. Theil A Proof of Crystallization in Two Dimensions , 2006 .

[13]  Veikko Ennola,et al.  On a problem about the Epstein zeta-function , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  D. Kinderlehrer,et al.  Regularity in free boundary problems , 1977 .

[15]  Xinfu Chen,et al.  An Application of the Modular Function in Nonlocal Variational Problems , 2007 .

[16]  A. Friedman,et al.  Convexity of solutions of semilinear elliptic equations , 1985 .

[17]  B. Helffer,et al.  On the Third Critical Field in Ginzburg-Landau Theory , 2006 .

[18]  R. Hervé,et al.  Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau , 1994 .

[19]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[20]  Bernard Helffer,et al.  Spectral Methods in Surface Superconductivity , 2010 .

[21]  Sylvia Serfaty,et al.  Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .

[22]  J. K. Hunter,et al.  Measure Theory , 2007 .

[23]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[24]  Giovanni Alberti,et al.  Uniform energy distribution for an isoperimetric problem with long-range interactions , 2008 .

[25]  Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement , 2010, 1011.4616.

[26]  Einar W. Høst,et al.  Doctoral Dissertation , 1956, Church History.

[27]  Régis Monneau,et al.  A Brief Overview on The Obstacle Problem , 2001 .

[28]  Lorentz space estimates for the Coulombian renormalized energy , 2011, 1105.3960.

[29]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[30]  Michael Struwe,et al.  On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions , 1994, Differential and Integral Equations.

[31]  Etienne Sandier,et al.  Lower Bounds for the Energy of Unit Vector Fields and Applications , 1998 .

[32]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[33]  R. Jerrard Lower bounds for generalized Ginzburg-Landau functionals , 1999 .

[34]  Giovanni Alberti,et al.  A new approach to variational problems with multiple scales , 2001 .

[35]  J. Dolbeault,et al.  Convexity estimates for nonlinear elliptic equations and application to free boundary problems , 2000 .

[36]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[37]  Luis A. Caffarelli,et al.  The regularity of free boundaries in higher dimensions , 1977 .

[38]  M. E. Becker Multiparameter Groups of Measure-Preserving Transformations: A Simple Proof of Wiener's Ergodic Theorem , 1981 .

[39]  Halil Mete Soner,et al.  The Jacobian and the Ginzburg-Landau energy , 2002 .

[40]  B. Kawohl When are solutions to nonlinear elliptic boundary value problems convex , 1985 .

[41]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[42]  H. Alloul Introduction to Superconductivity , 2011 .

[43]  Haim Brezis,et al.  A VARIATIONAL FORMULATION FOR THE TWO-SIDED OBSTACLE PROBLEM WITH MEASURE DATA , 2002 .

[44]  Petru Mironescu,et al.  Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale , 1996 .

[45]  Charles Radin,et al.  The ground state for soft disks , 1981 .

[46]  Cyrill B. Muratov,et al.  Communications in Mathematical Physics Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions , 2010 .

[47]  P. H. Diananda Notes on two lemmas concerning the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.

[48]  Cyrill B. Muratov,et al.  The Gamma-limit of the two-dimensional Ohta-Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy , 2012, 1210.5098.

[49]  Avner Friedman,et al.  The free boundary of a semilinear elliptic equation , 1984 .

[50]  Sylvia Serfaty,et al.  The Decrease of Bulk-Superconductivity Close to the Second Critical Field in the Ginzburg-Landau Model , 2003, SIAM J. Math. Anal..

[51]  Hugh L. Montgomery,et al.  Minimal theta functions , 1988, Glasgow Mathematical Journal.

[52]  H. Aydi,et al.  Vortex analysis of the periodic Ginzburg–Landau model , 2009 .

[53]  John L. Lewis,et al.  Convex solutions of certain elliptic equations have constant rank hessians , 1987 .