From the Ginzburg-Landau Model to Vortex Lattice Problems
暂无分享,去创建一个
[1] J. W. S. Cassels,et al. On a problem of Rankin about the Epstein zeta-function , 1959, Proceedings of the Glasgow Mathematical Association.
[2] R. Dougherty,et al. Type II Superconductivity , 2012 .
[3] N. Rivière. Singular integrals and multiplier operators , 1971 .
[4] Veikko Ennola,et al. A lemma about the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.
[5] Robert A. Rankin,et al. A Minimum Problem for the Epstein Zeta-Function , 1953, Proceedings of the Glasgow Mathematical Association.
[6] S. Serfaty,et al. Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $$H_{{c}_{2}}$$ , 2007 .
[7] D. Kinderlehrer,et al. The Smoothness of Solutions to Nonlinear Variational Inequalities , 1974 .
[8] S. Serfaty,et al. 2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.
[9] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[10] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[11] S. Lang. Introduction to Arakelov Theory , 1988 .
[12] F. Theil. A Proof of Crystallization in Two Dimensions , 2006 .
[13] Veikko Ennola,et al. On a problem about the Epstein zeta-function , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] D. Kinderlehrer,et al. Regularity in free boundary problems , 1977 .
[15] Xinfu Chen,et al. An Application of the Modular Function in Nonlocal Variational Problems , 2007 .
[16] A. Friedman,et al. Convexity of solutions of semilinear elliptic equations , 1985 .
[17] B. Helffer,et al. On the Third Critical Field in Ginzburg-Landau Theory , 2006 .
[18] R. Hervé,et al. Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau , 1994 .
[19] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[20] Bernard Helffer,et al. Spectral Methods in Surface Superconductivity , 2010 .
[21] Sylvia Serfaty,et al. Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .
[22] J. K. Hunter,et al. Measure Theory , 2007 .
[23] Sylvia Serfaty,et al. Vortices in the Magnetic Ginzburg-Landau Model , 2006 .
[24] Giovanni Alberti,et al. Uniform energy distribution for an isoperimetric problem with long-range interactions , 2008 .
[25] Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement , 2010, 1011.4616.
[26] Einar W. Høst,et al. Doctoral Dissertation , 1956, Church History.
[27] Régis Monneau,et al. A Brief Overview on The Obstacle Problem , 2001 .
[28] Lorentz space estimates for the Coulombian renormalized energy , 2011, 1105.3960.
[29] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[30] Michael Struwe,et al. On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions , 1994, Differential and Integral Equations.
[31] Etienne Sandier,et al. Lower Bounds for the Energy of Unit Vector Fields and Applications , 1998 .
[32] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[33] R. Jerrard. Lower bounds for generalized Ginzburg-Landau functionals , 1999 .
[34] Giovanni Alberti,et al. A new approach to variational problems with multiple scales , 2001 .
[35] J. Dolbeault,et al. Convexity estimates for nonlinear elliptic equations and application to free boundary problems , 2000 .
[36] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[37] Luis A. Caffarelli,et al. The regularity of free boundaries in higher dimensions , 1977 .
[38] M. E. Becker. Multiparameter Groups of Measure-Preserving Transformations: A Simple Proof of Wiener's Ergodic Theorem , 1981 .
[39] Halil Mete Soner,et al. The Jacobian and the Ginzburg-Landau energy , 2002 .
[40] B. Kawohl. When are solutions to nonlinear elliptic boundary value problems convex , 1985 .
[41] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[42] H. Alloul. Introduction to Superconductivity , 2011 .
[43] Haim Brezis,et al. A VARIATIONAL FORMULATION FOR THE TWO-SIDED OBSTACLE PROBLEM WITH MEASURE DATA , 2002 .
[44] Petru Mironescu,et al. Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale , 1996 .
[45] Charles Radin,et al. The ground state for soft disks , 1981 .
[46] Cyrill B. Muratov,et al. Communications in Mathematical Physics Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions , 2010 .
[47] P. H. Diananda. Notes on two lemmas concerning the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.
[48] Cyrill B. Muratov,et al. The Gamma-limit of the two-dimensional Ohta-Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy , 2012, 1210.5098.
[49] Avner Friedman,et al. The free boundary of a semilinear elliptic equation , 1984 .
[50] Sylvia Serfaty,et al. The Decrease of Bulk-Superconductivity Close to the Second Critical Field in the Ginzburg-Landau Model , 2003, SIAM J. Math. Anal..
[51] Hugh L. Montgomery,et al. Minimal theta functions , 1988, Glasgow Mathematical Journal.
[52] H. Aydi,et al. Vortex analysis of the periodic Ginzburg–Landau model , 2009 .
[53] John L. Lewis,et al. Convex solutions of certain elliptic equations have constant rank hessians , 1987 .