Stability of a GI/G/1 Queue: A Survey

Stability of queues is of fundamental importance in the application of queueing models. To establish the stability of a queue, one has to utilize a mathematical model to describe the evolution of the queue and then defines stability on the model. However, the types of stability are various according to their underlying processes. In this study, we survey the different underlying processes of a GI/G/1 queue, classify the various types of stability and study the relations among them. Furthermore, from the viewpoint of sample-path, we propose a new result regarding the growth rate of the queue time when the traffic intensity equals 1.

[1]  Mark H. A. Davis Piecewise-deterministic Markov processes , 1993 .

[2]  R. M. Loynes,et al.  On the Waiting‐Time Distribution for Queues in Series , 1965 .

[3]  Shaler Stidham,et al.  Deterministic Analysis of Queueing Systems with Heterogeneous Servers , 1992, Theor. Comput. Sci..

[4]  Hong Chen Fluid Approximations and Stability of Multiclass Queueing Networks: Work-Conserving Disciplines , 1995 .

[5]  Aleksandr Alekseevich Borovkov,et al.  Stochastic processes in queueing theory , 1976 .

[6]  John H. Vande Vate,et al.  Global Stability of Two-Station Queueing Networks , 1996 .

[7]  Karl Sigman,et al.  Queues as Harris recurrent Markov chains , 1988, Queueing Syst. Theory Appl..

[8]  Jean C. Walrand,et al.  Stabilizing an uncertain production system , 1989, Queueing Syst. Theory Appl..

[9]  Alan G. Konheim,et al.  An Elementary Solution of the Queuing System G/G/1 , 1975, SIAM J. Comput..

[10]  Muhammad El-Taha,et al.  A note on sample-path stability conditions for input - output processes , 1993, Oper. Res. Lett..

[11]  Ronald W. Wolff,et al.  Stochastic Modeling and the Theory of Queues , 1989 .

[12]  W. Hopp,et al.  Using an optimized queueing network model to support wafer fab design , 2002 .

[13]  W. Szczotka,et al.  Stationary representation of queues. I , 1986, Advances in Applied Probability.

[14]  R. M. Loynes,et al.  The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  T. Rolski Queues with non-stationary input stream: Ross's conjecture , 1981, Advances in Applied Probability.

[16]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[17]  Ravi R. Mazumdar,et al.  On pathwise behavior of queues , 1992, Oper. Res. Lett..

[18]  Mark Kac,et al.  Four papers on probability , 1951 .

[19]  D. Down,et al.  Stability of Queueing Networks , 1994 .

[20]  A. K. Erlang The theory of probabilities and telephone conversations , 1909 .

[21]  Costas Courcoubetis,et al.  Stability of Flexible Manufacturing Systems , 1994, Oper. Res..

[22]  D. V. Lindley,et al.  The theory of queues with a single server , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Kan Wu,et al.  Classification of queueing models for a workstation with interruptions: a review , 2014 .

[24]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[25]  N. Weiss A Course in Probability , 2005 .

[26]  Bruce Hajek,et al.  Scheduling with asynchronous service opportunities with applications to multiple satellite systems , 1993, IEEE Trans. Autom. Control..

[27]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[28]  Charles M. Grinstead,et al.  Introduction to probability , 1986, Statistics for the Behavioural Sciences.

[29]  Muhammad El-Taha,et al.  Sample-path analysis of stochastic discrete-event systems , 1993, Discret. Event Dyn. Syst..

[30]  S. Stidham,et al.  Sample-Path Analysis of Queueing Systems , 1998 .

[31]  Eitan Altman,et al.  Performance Bounds and Pathwise Stability for Generalized Vacation and Polling Systems , 1998, Oper. Res..

[32]  D. Yao,et al.  Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization , 2001, IEEE Transactions on Automatic Control.

[33]  J. Dai On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models , 1995 .