Hyperplane Arrangements with Large Average Diameter
暂无分享,去创建一个
Antoine Deza | Feng Xie | A. Deza | Feng Xie
[1] Michael Shub,et al. On the Curvature of the Central Path of Linear Programming Theory , 2003, Found. Comput. Math..
[2] David Forge,et al. On Counting the k-face Cells of Cyclic Arrangements , 2001, Eur. J. Comb..
[3] Denis Naddef,et al. The hirsch conjecture is true for (0, 1)-polytopes , 1989, Math. Program..
[4] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[5] Klaus Meer. Jean-Pierre Dedieu, Gregorio Malajovich, Mike Shub:: On the curvature of the central path of linear programming theory , 2006 .
[6] V. Klee. Paths on Polyhedra. I , 1965 .
[7] C. Roos,et al. Interior Point Methods for Linear Optimization , 2005 .
[8] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[9] B. Sturmfels. Oriented Matroids , 1993 .
[10] R. W. Shannon. Simplicial cells in arrangements of hyperplanes , 1979 .
[11] Günter M. Ziegler,et al. Higher bruhat orders and cyclic hyperplane arrangements , 1993 .
[12] G. Ziegler. Lectures on Polytopes , 1994 .
[13] P. Lockhart. INTRODUCTION TO GEOMETRY , 2007 .
[14] Jim Lawrence,et al. Oriented matroids , 1978, J. Comb. Theory B.
[15] Komei Fukuda,et al. Complete combinatorial generation of small point configurations and hyperplane arrangements , 2001, CCCG.
[16] Komei Fukuda,et al. From the zonotope construction to the Minkowski addition of convex polytopes , 2004, J. Symb. Comput..
[17] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[18] James Renegar,et al. A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.
[19] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[20] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[21] Komei Fukuda,et al. Generation of Oriented Matroids—A Graph Theoretical Approach , 2002, Discret. Comput. Geom..
[22] James G. Oxley,et al. Matroid theory , 1992 .
[23] Xun Dong. The bounded complex of a uniform affine oriented matroid is a ball , 2008, J. Comb. Theory, Ser. A.
[24] Nora Sleumer,et al. Output-Sensitive Cell Enumeration in Hyperplane Arrangements , 1998, Nord. J. Comput..
[25] Victor Klee,et al. Many Polytopes Meeting the Conjectured Hirsch Bound , 1998, Discret. Comput. Geom..
[26] Tamás Terlaky,et al. Polytopes and arrangements: Diameter and curvature , 2008, Oper. Res. Lett..
[27] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[28] Godfried T. Toussaint,et al. On Envelopes of Arrangements of Lines , 1996, J. Algorithms.
[29] Bernd Sturmfels,et al. On the coordinatization of oriented matroids , 1986, Discret. Comput. Geom..
[30] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[31] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[32] N. Mnev. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .
[33] Peter W. Shor,et al. Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.
[35] Yan-Bin Jia,et al. The simplex method , 2019, 100 Years of Math Milestones.
[36] Franz Aurenhammer. Using Gale Transforms in Computational Geometry , 1988, Workshop on Computational Geometry.
[37] V. Klee,et al. Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .
[38] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[39] Tamás Terlaky,et al. A Continuous d-Step Conjecture for Polytopes , 2009, Discret. Comput. Geom..
[40] Akihisa Tamura,et al. Combinatorial face enumeration in arrangements and oriented matroids , 1991, Discret. Appl. Math..
[41] Juergen Bokowski. Computational Oriented Matroids , 2006 .
[42] 中山 裕貴,et al. Methods for realizations of oriented matroids and characteristic oriented matroids , 2007 .