A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality

Phase-field models, the simplest of which is Allen–Cahn's problem, are characterized by a small parameter e that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on e-2 . Using an energy argument combined with a topological continuation argument and a spectral estimate, we establish an a posteriori error control result with only a low order polynomial dependence in e-1 . Our result is applicable to any conforming discretization technique that allows for a posteriori residual estimation. Residual estimators for an adaptive finite element scheme are derived to illustrate the theory.

[1]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[2]  Xinfu Chen,et al.  Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .

[3]  Kunibert G. Siebert,et al.  ALBERT: An adaptive hierarchical nite element toolbox , 2000 .

[4]  Michelle Schatzman,et al.  Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.

[5]  Jacques Rappaz,et al.  Existence of solutions to a phase-field model for the isothermal solidification process of a binary alloy , 2000 .

[6]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[7]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[8]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[9]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[10]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[11]  Gunduz Caginalp,et al.  Convergence of the phase field model to its sharp interface limits , 1998, European Journal of Applied Mathematics.

[12]  P. Clément Approximation by finite element functions using local regularization , 1975 .