A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[2] Xinfu Chen,et al. Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .
[3] Kunibert G. Siebert,et al. ALBERT: An adaptive hierarchical nite element toolbox , 2000 .
[4] Michelle Schatzman,et al. Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.
[5] Jacques Rappaz,et al. Existence of solutions to a phase-field model for the isothermal solidification process of a binary alloy , 2000 .
[6] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[7] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[8] Andreas Prohl,et al. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.
[9] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[10] J. Cahn,et al. A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .
[11] Gunduz Caginalp,et al. Convergence of the phase field model to its sharp interface limits , 1998, European Journal of Applied Mathematics.
[12] P. Clément. Approximation by finite element functions using local regularization , 1975 .