Water-use strategies of six co-existing Mediterranean woody species during a summer drought

[1]  G. Gee,et al.  Particle-size Analysis , 2018, SSSA Book Series.

[2]  F. Pugnaire,et al.  Woody species of a semi-arid community are only moderately resistant to cavitation , 2010 .

[3]  E. Nikinmaa,et al.  Hydraulic adjustment of Scots pine across Europe. , 2009, The New phytologist.

[4]  J. Richards,et al.  Night-time transpiration can decrease hydraulic redistribution. , 2009, Plant, cell & environment.

[5]  J. Landsberg,et al.  Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? , 2009, Journal of experimental botany.

[6]  A. Kyparissis,et al.  An ecophysiological approach of hydraulic performance for nine Mediterranean species. , 2009, Tree physiology.

[7]  David G. Williams,et al.  Drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina. , 2009, The New phytologist.

[8]  E. Trejos Tropical dry forest recovery : processes and causes of change , 2009 .

[9]  J. Flexas,et al.  Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms , 2009, Plant and Soil.

[10]  F. Maestre,et al.  Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application , 2008 .

[11]  T. Marañón,et al.  Respuesta plástica a la luz y al agua en cuatro especies mediterráneas del género Quercus (Fagaceae) , 2008 .

[12]  R. Zweifel,et al.  Ultrasonic acoustic emissions in drought-stressed trees--more than signals from cavitation? , 2008, The New phytologist.

[13]  Taieb Tounekti,et al.  Water relations and drought-induced embolism in olive (Olea europaea) varieties 'Meski' and 'Chemlali' during severe drought. , 2008, Tree physiology.

[14]  N. McDowell,et al.  Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? , 2008, The New phytologist.

[15]  R. Zweifel,et al.  Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). , 2008, Tree physiology.

[16]  D. Ackerly,et al.  Evolution of hydraulic traits in closely related species pairs from Mediterranean and nonMediterranean environments of North America. , 2007, The New phytologist.

[17]  S. Rambal,et al.  Functional Attributes in Mediterranean-Type Ecosystems , 2007 .

[18]  Kathy Steppe,et al.  Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. , 2007, Journal of experimental botany.

[19]  F. Ewers,et al.  CAVITATION RESISTANCE AMONG 26 CHAPARRAL SPECIES OF SOUTHERN CALIFORNIA , 2007 .

[20]  R. Fernández,et al.  Stay wet or else: three ways in which plants can adjust hydraulically to their environment. , 2006, Journal of experimental botany.

[21]  R. Zamora,et al.  Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. , 2006, The New phytologist.

[22]  R. Bhaskara,et al.  Ecological relevance of minimum seasonal water potentials , 2006 .

[23]  J. Thompson Plant Evolution in the Mediterranean , 2020 .

[24]  S. Rambal,et al.  Comparative water relations of four Mediterranean oak species , 1992, Vegetatio.

[25]  V. Vallejo,et al.  Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. , 2003, Journal of experimental botany.

[26]  J. Richards,et al.  MAGNITUDE AND MECHANISMS OF DISEQUILIBRIUM BETWEEN PREDAWN PLANT AND SOIL WATER POTENTIALS , 2003 .

[27]  K. Snyder,et al.  lose water at night , 2003 .

[28]  S. Munné-Bosch,et al.  Enhanced photo- and antioxidative protection, and hydrogen peroxide accumulation in drought-stressed Cistus clusii and Cistus albidus plants. , 2003, Tree physiology.

[29]  Jesús Julio Camarero,et al.  Effects of a severe drought on Quercus ilex radial growth and xylem anatomy , 2003, Trees.

[30]  M. G. Ryan Canopy processes research. , 2002, Tree physiology.

[31]  I. Oliveras,et al.  Xylem hydraulic properties of roots and stems of nine Mediterranean woody species , 2002, Oecologia.

[32]  M. G. Ryan,et al.  Canopy and hydraulic conductance in young, mature and old Douglas-fir trees. , 2002, Tree physiology.

[33]  D. Bonal,et al.  Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species , 2001 .

[34]  J. Sperry,et al.  Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. , 1996, American journal of botany.

[35]  F. Pugnaire,et al.  Diurnal and seasonal changes in cladode photosynthetic rate in relation to canopy age structure in the leguminous shrub Retama sphaerocarpa , 1999 .

[36]  L. Donovan,et al.  Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs , 1999, Oecologia.

[37]  F. Pugnaire,et al.  Handbook of Functional Plant Ecology , 1999 .

[38]  C. V. Willigen,et al.  A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. , 1998, Tree physiology.

[39]  H. Jones Stomatal control of photosynthesis and transpiration , 1998 .

[40]  François Tardieu,et al.  Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours , 1998 .

[41]  Stan D. Wullschleger,et al.  Whole-plant water flux in understory red maple exposed to altered precipitation regimes. , 1998, Tree physiology.

[42]  J. H. Zar,et al.  Biostatistical Analysis, 3rd edn. , 1996 .

[43]  M. Gullo,et al.  Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. , 1996, The New phytologist.

[44]  O. W. Archibold Ecology of World Vegetation , 1994, Springer Netherlands.

[45]  Roderick C. Dewar,et al.  Carbon Allocation in Trees: a Review of Concepts for Modelling , 1994 .

[46]  John S. Sperry,et al.  Intra‐ and inter‐plant variation in xylem cavitation in Betula occidentalis , 1994 .

[47]  J. Tenhunen,et al.  Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. , 1994, Tree physiology.

[48]  M. Lillis,et al.  Gas exchange and resource-use patterns along a Mediterranean successional gradient , 1993 .

[49]  F. Woodward,et al.  Evolutionary and Ecophysiological Responses of Mountain Plants to the Growing Season Environment , 1990 .

[50]  S. Long,et al.  Photosynthesis in Contrasting Environments , 1986 .

[51]  W. Rawls,et al.  Estimating generalized soil-water characteristics from texture , 1986 .

[52]  J. D. Smidt Mediterranean-type shrublands , 1983 .

[53]  M. Zimmermann Xylem Structure and the Ascent of Sap , 1983, Springer Series in Wood Science.

[54]  F. di Castri,et al.  Ecosystems of the world [Vol.] 11. Mediterranean-type shrublands. , 1981 .

[55]  Richard H. Waring,et al.  Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old‐growth Douglas‐fir , 1978 .

[56]  P. Kramer,et al.  Responses of Plants to Environmental Stresses , 1973 .

[57]  P. F. Scholander,et al.  Sap Pressure in Vascular Plants , 1965, Science.

[58]  R. Brouwer Nutritive influences on the distribution of dry matter in the plant , 1962 .