A comparison of four approaches to photonic integration

We present a techno-economic analysis of four different platforms for photonic integration: pure III-V/InP, pure SOI (monolithic silicon photonics), III-V heterogeneously integrated on SOI (heterogeneous integration), and III-V epitaxially grown on silicon.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[3]  Justin Norman,et al.  Quantum Dot Lasers for Silicon Photonics , 2018 .

[4]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  John E. Bowers,et al.  A path to 300 mm hybrid silicon photonic integrated circuits , 2014, OFC 2014.

[6]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[7]  Alexander Fang,et al.  Integrated Silicon Photonic Laser Sources for Telecom and Datacom , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[8]  Qiang Li,et al.  Quantum dot lasers grown on (001) Si substrate for integration with amorphous Si waveguides , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[9]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[10]  W. Marsden I and J , 2012 .

[11]  P. Pintus,et al.  Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers , 2013, IEEE Photonics Journal.

[12]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[13]  Richard V. Penty,et al.  An introduction to InP-based generic integration technology , 2014 .