Development of self-cooled liquid metal breeder blankets

The development of liquid metal breeder blankets for fusion reactors has been performed in the Forschungszentrum Karlsruhe as a part of the European fusion blanket development program with the aim to select the two most promising concepts in 1995 for further development. ln this report are described the designs of self-cooled blankets tagether with the results of the accompanying R&D program oftheyears 1992-1995. The program includes design studies as weil as theoretical and experimental work in the fields of neutronics, magneto-hydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of Iead-Iithium, tritium extraction and control, safety, reliability, electrical insulating coatings, and fabrication technologies for blanket segments. This work has been performed in the framework of the nuclear fusion project of the Kernforschungszentrum Karlsruhe and is supported by the European Union within the European Fusion Technology Program. Entwicklung von selbstgekühlten Flüssigmetaii-Brutblankets Zusammenfassung Die Entwicklung von Flüssigmetaii-Biankets für Fusionsreaktoren erfolgte im Forschungszentrum Karlsruhe als Teil des Europäischen Blanketentwicklungsprogrammes mit dem Ziel, in 1995 die zwei aussichtsreichsten Konzepte zur weiteren Entwicklung auszuwählen. Beschrieben sind in dem Bericht Entwürfe von selbstgekühlten Blankets zusammen mit den Ergebnissen des zugehörigen F + E-Programmes der Jahre 1992-1995. Das Programm umfaßt neben Entwurfsstudien theoretische und experimentalle Arbeiten auf den Gebieten Neutronik, Magnetohydrodynamik, Thermohydraulik, mechanische Spannungen, Verträglichkeit und Reinigung von Blei-Lithium, Tritium-Extraktion und -Permeation, Sicherheit, Zuverlässigkeit, Isolationsschichten, und Fabrikationstechnologien für Blanketsegmente. Die vorliegende Arbeit wurde im Rahmen des Projektes Kernfusion des Forschungszentrums Karlsruhe durchgeführt und ist ein von der Europäischen Union geförderter Beitrag im Rahmen des Fusionstechnologieprogramms.

[1]  L. Barleon,et al.  First results from different investigations on MHD flow in multichannel U-Bends , 1995 .

[2]  E. Proust,et al.  Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO , 1995 .

[3]  Neil B. Morley,et al.  Flow balancing in liquid metal blankets , 1995 .

[4]  H. Borgstedt,et al.  The development of a direct insulation layer for the liquid metal cooled fusion reactor blanket , 1994 .

[5]  H. U. Borgstedt,et al.  Corrosion of insulating layers on MANET steel in flowing Pb17Li , 1994 .

[6]  J. Oschinski,et al.  Behavior of Po-210 in molten Pb-17Li , 1992 .

[7]  J. Reimann,et al.  Tritium Removal from Nak-Cold Traps: First Results on Hydride Precipitation Kinetics , 1992 .

[8]  Richard F. Mattas,et al.  MHD considerations for a self-cooled liquid lithium blanket , 1992 .

[9]  C. Savatteri,et al.  Lithium-lead/water interaction. Large break experiments , 1991 .

[10]  H. Borgstedt,et al.  Material compatibility tests with flowing Pb17Li eutectic , 1991 .

[11]  R. Bünde,et al.  Reliability of welds and brazed joints in blankets and its influence on availability , 1991 .

[12]  M. Abdou,et al.  Analysis of liquid metal MHD flow in multiple adjacent ducts using an iterative method to solve the core flow equations , 1991 .

[13]  L. Barleon,et al.  MHD flow in liquid-metal-cooled blankets , 1991 .

[14]  H. Borgstedt,et al.  Corrosion and mechanical properties of the martensitic steel X18CrMoVNb 12 1 in flowing Pb17Li , 1991 .

[15]  S. Horn,et al.  Behavior of deuterium and rare gases in thermal convection loops with molten Pb17Li , 1991 .

[16]  C. Savatteri,et al.  Studies with respect to the estimation of liquid metal blanket safety , 1991 .

[17]  Abdou,et al.  Development of an analytic core flow approximation for a square duct in an oblique magnetic field , 1991 .

[18]  H. Gräbner,et al.  Transport of deuterium and rare gases by flowing molten Pb-17Li , 1991 .

[19]  T. Moon,et al.  Liquid metal flow through a sharp elbow in the plane of a strong magnetic field , 1990, Journal of Fluid Mechanics.

[20]  G. Frees,et al.  Dynamische Korrosionsuntersuchungen in der eutektischen Blei-Lithium-Schmelze Pb-17Li , 1989 .

[21]  J. Walker,et al.  MHD flow in insulating circular ducts for fusion blankets , 1989 .

[22]  W. J. O'donnell,et al.  The thermophysical and transport properties of eutectic NaK near room temperature , 1989 .

[23]  Ulrich Fischer,et al.  Self-cooled liquid-metal blanket concept , 1988 .

[24]  H. Gräbner,et al.  Tritex, a forced convection loop with Pb-17Li , 1988 .

[25]  G. Talmage,et al.  Turbulence and the feasibility of self-cooled liquid metal blankets for fusion reactors , 1986 .

[26]  Rene Moreau,et al.  Why, how, and when, MHD turbulence becomes two-dimensional , 1982, Journal of Fluid Mechanics.

[27]  H. Sauter,et al.  Experimental Determination of Sodium Evaporation Rates , 1982 .

[28]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[29]  John S. Walker,et al.  A theoretical study of the effects of wall conductivity, non-uniform magnetic fields and variable-area ducts on liquid-metal flows at high Hartmann number , 1978, Journal of Fluid Mechanics.

[30]  H. Schnauder,et al.  Evolution of heat-exchanger design for sodium-cooled reactors , 1975 .

[31]  J. A. Shercliff The flow of conducting fluids in circular pipes under transverse magnetic fields , 1956, Journal of Fluid Mechanics.

[32]  S. Horn,et al.  Behaviour of Lithium in Pb-17Li Systems , 1995 .

[33]  J. Reimann,et al.  HYDROGEN REMOVAL FROM NaK WITH MESH-PACKED AND MESHLESS COLD TRAPS , 1995 .

[34]  S. Molokov Liquid metal flows in manifolds and expansions of insulating rectangular ducts in the plane perpendicular to a strong magnetic field , 1994 .

[35]  W. Nägele,et al.  European DEMO BOT Solid Breeder Blanket , 1994 .

[36]  S. Molokov Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field , 1993 .

[37]  H. Schnauder,et al.  RELIABILITY INVESTIGATIONS AND IMPROVEMENTS OF THE COOLING SYSTEM OF A SELF-COOLED LIQUID METAL BREEDER BLANKET , 1993 .

[38]  U. Fischer,et al.  PRODUCTION OF 210Po IN Pb-17Li: ASSESSMENT OF METHODOLOGICAL AND DATA RELATED UNCERTAINTIES , 1993 .

[39]  S. Molokov,et al.  MHD-FLOW IN MULTICHANNEL U-BENDS: SCREENING EXPERIMENTS AND THEORETICAL ANALYSIS , 1993 .

[40]  B. Picologlou,et al.  Magnetohydrodynamic Flow in a Manifold and Multiple Rectangular Coolant Ducts of Self-Cooled Blankets , 1991 .

[41]  H. Gräbner,et al.  EXTRACTION OF TRITIUM FROM MOLTEN Pb-17Li BY USE OF SOLID GETTERS , 1991 .

[42]  M. Abdou,et al.  Development of a computational method for the full solution of mhd flow in fusion blankets , 1989 .

[43]  M. L. Corradini,et al.  Liquid metal chemical reaction safety in fusion facilities , 1987 .

[44]  B. F. Picologlou,et al.  ALEX results: A comparison of measurements from a round and a rectangular duct with 3-D code predictions , 1987 .

[45]  B. Picologlou,et al.  Techniques for Measurement of Velocity in Liquid-Metal MHD Flows , 1986 .

[46]  G. Gervasini,et al.  INTERACTION OF HYDROGEN ISOTOPES WITH THE LIQUID EUTECTIC ALLOY 17Li83Pb , 1986 .

[47]  G. Kuhlbörsch,et al.  Physical properties and chemical reaction behaviour of Li17Pb83 related to its use as a fusion reactor blanket material , 1984 .

[48]  C. C. Addison The Chemistry of the Liquid Alkali Metals , 1984 .

[49]  L. Caldarola,et al.  The boolean algebra with restricted variables as a tool for fault tree modularization , 1981 .

[50]  Wolfgang Kalide,et al.  Einführung in die technische Strömungslehre , 1971 .

[51]  A. Kulikovskii,et al.  Slow steady flows of a conducting fluid at large Hartmann numbers , 1968 .