Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.

[1]  C. Körner,et al.  Biomechanical Behavior of Bone Scaffolds Made of Additive Manufactured Tricalciumphosphate and Titanium Alloy under Different Loading Conditions , 2013, Journal of applied biomaterials & functional materials.

[2]  Robert Souffrant,et al.  Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling , 2012, PloS one.

[3]  M. Viceconti,et al.  Compressive behaviour of child and adult cortical bone. , 2011, Bone.

[4]  Klaus Mecke,et al.  Minimal surface scaffold designs for tissue engineering. , 2011, Biomaterials.

[5]  Liulan Lin,et al.  Biomechanical Numerical Simulation of Bone Tissue Engineering Scaffolds , 2011 .

[6]  J. Grotowski,et al.  Prototypes for Bone Implant Scaffolds Designed via Topology Optimization and Manufactured by Solid Freeform Fabrication , 2010 .

[7]  J M García-Aznar,et al.  Scaffold microarchitecture determines internal bone directional growth structure: a numerical study. , 2010, Journal of biomechanics.

[8]  Henrique de Amorim Almeida,et al.  Virtual topological optimisation of scaffolds for rapid prototyping. , 2010, Medical engineering & physics.

[9]  L. Murr,et al.  Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Shivakumar Raman,et al.  Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). , 2010, Journal of the mechanical behavior of biomedical materials.

[11]  Ryan B. Wicker,et al.  Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting , 2010 .

[12]  R. Singer,et al.  Auxetic cellular structures through selective electron‐beam melting , 2010 .

[13]  Wenguang Zhang,et al.  Fabrication and compressive properties of Ti6Al4V implant with honeycomb‐like structure for biomedical applications , 2010 .

[14]  D. Mitton,et al.  Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data. , 2009, Medical engineering & physics.

[15]  A. Olivares,et al.  Finite element study of scaffold architecture design and culture conditions for tissue engineering. , 2009, Biomaterials.

[16]  Abhay Pandit,et al.  Analysis of the mechanical behavior of a titanium scaffold with a repeating unit-cell substructure. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[17]  Rainer Bader,et al.  A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: Modeling and experimental validation , 2009, Comput. Methods Programs Biomed..

[18]  A. Phillips The femur as a musculo-skeletal construct: a free boundary condition modelling approach. , 2009, Medical engineering & physics.

[19]  S. Lohfeld,et al.  Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering , 2009, Journal of materials science. Materials in medicine.

[20]  Ke Yang,et al.  Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds , 2009, Biomedical materials.

[21]  Robert F. Singer,et al.  Selective Electron Beam Melting of Cellular Titanium: Mechanical Properties , 2008 .

[22]  O. Harrysson,et al.  Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology , 2008 .

[23]  Minglun Fang,et al.  The Mechanical Properties of Bone Tissue Engineering Scaffold Fabricating Via Selective Laser Sintering , 2007, LSMS.

[24]  Robert F. Singer,et al.  Cellular Titanium by Selective Electron Beam Melting , 2007 .

[25]  Hyoun‐Ee Kim,et al.  Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores , 2006, Journal of materials science. Materials in medicine.

[26]  M. von Walter,et al.  Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. , 2006, Biomaterials.

[27]  M. H. Luxner,et al.  Finite element modeling concepts and linear analyses of 3D regular open cell structures , 2005 .

[28]  M. A. Wettergreen,et al.  Computer-Aided Tissue Engineering of a Human Vertebral Body , 2005, Annals of Biomedical Engineering.

[29]  Colleen L Flanagan,et al.  Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. , 2005, Biomaterials.

[30]  G Bergmann,et al.  Determination of muscle loading at the hip joint for use in pre-clinical testing. , 2005, Journal of biomechanics.

[31]  N. Kikuchi,et al.  A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. , 2004, Journal of biomechanics.

[32]  M. Amling,et al.  [Mechanical failure of porous hydroxyapatite ceramics 7.5 years after implantation in the proximal tibial]. , 2004, Der Unfallchirurg.

[33]  C. Jürgens,et al.  [Complications after harvesting of autologous bone from the ventral and dorsal iliac crest - a prospective, controlled study]. , 2003, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[34]  M Viceconti,et al.  The muscle standardized femur: A step forward in the replication of numerical studies in biomechanics , 2003, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[35]  S. Hollister,et al.  Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. , 2002, Biomaterials.

[36]  L Kinzl,et al.  Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. , 2002, Bone.

[37]  J. Rueger,et al.  Langzeitergebnisse nach Anwendung einer porösen Hydroxylapatitkeramik (Endobon) zur operativen Versorgung von Tibiakopffrakturen , 2002, Der Unfallchirurg.

[38]  M Viceconti,et al.  A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur , 2001, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[39]  M. U. Helber,et al.  [Metaphyseal defect substitute: hydroxylapatite ceramic. Results of a 3 to 4 year follow up]. , 2000, Der Unfallchirurg.

[40]  C. Ulrich,et al.  Metaphysärer Defektersatz mit Hydrosylapatitkeramik 3- bis 4-Jahresnachuntersuchungs-Ergebnisse , 2000, Der Unfallchirurg.

[41]  M. Gabl,et al.  Integration of porous hydroxylapatite ceramic prosthesis at the distal radius in elderly patients. Radiological examination , 1999, Der Unfallchirurg.

[42]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[43]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[44]  H. Tscherne,et al.  Komplikationen der Spongiosaentnahme am Beckenkamm Eine retrospektive Analyse von 1191 Fällen , 1997, Der Chirurg.

[45]  H. Tscherne,et al.  [Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1,191 cases]. , 1997, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[46]  S. Tröster,et al.  [Hydroxyapatite ceramics in clinical application. Histological findings in 23 patients]. , 1997, European Journal of Trauma.

[47]  J. Jonas,et al.  Elastic moduli of titanium-hydrogen alloys in the temperature range 20 °C to 1100 °C , 1996 .

[48]  N. Kikuchi,et al.  A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. , 1994, Journal of biomechanics.

[49]  J. Mulliken,et al.  Donor-site morbidity after harvesting rib and iliac bone. , 1984, Plastic and reconstructive surgery.

[50]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  Emeka Nkenke,et al.  In vivo performance of selective electron beam-melted Ti-6Al-4V structures. , 2010, Journal of biomedical materials research. Part A.

[52]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[53]  A. Amis,et al.  The effect of muscle loading on the simulation of bone remodelling in the proximal femur. , 2005, Journal of biomechanics.

[54]  M. Fukuhara,et al.  Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature , 1993 .

[55]  M. Chapman,et al.  Morbidity at bone graft donor sites. , 1989, Journal of orthopaedic trauma.