Decision-theoretic rough fuzzy set model and application

This article investigates the rough approximation of a fuzzy concept on a probabilistic approximation space. We propose the probabilistic rough fuzzy set by defining the conditional probability of a fuzzy event. Then we establish the model of probabilistic rough fuzzy set and discuss several properties in detail. Furthermore, three generalizations of probabilistic rough fuzzy set, namely, 0.5-probabilistic rough fuzzy set, variable precision probabilistic rough fuzzy set and Bayesian rough fuzzy set are reported. In order to give a systematic method of selecting parameters for the probabilistic rough fuzzy set, we propose a decision-theoretic rough fuzzy set. That is, we formulate a non-parametric definition of the probabilistic rough fuzzy set. Moreover, we illustrate the motivation and verify the validity of the decision-theoretic rough fuzzy set by using a credit card applicant decision-making problem. Furthermore, the interrelationship between the decision-theoretic rough fuzzy set and the probabilistic rough fuzzy set is explained. The main contribution of this paper is twofold. One is to extend the probabilistic rough set to fuzzy environment, i.e., the probabilistic rough fuzzy set model. Another is to present an approach to select parameters needed in probabilistic rough fuzzy set modeling by using the process of decision-making under conditions of risk.

[1]  Wojciech Ziarko,et al.  Acquisition of hierarchy‐structured probabilistic decision tables and rules from data , 2003, Expert Syst. J. Knowl. Eng..

[2]  Bing Zhou A New Formulation of Multi-category Decision-Theoretic Rough Sets , 2011, RSKT.

[3]  Qinghua Hu,et al.  A novel method for attribute reduction of covering decision systems , 2014, Inf. Sci..

[4]  Wojciech Ziarko,et al.  Probabilistic approach to rough sets , 2008, Int. J. Approx. Reason..

[5]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[6]  Jiye Liang,et al.  Multigranulation rough sets: From partition to covering , 2013, Inf. Sci..

[7]  Jingtao Yao,et al.  Analysis of Data-Driven Parameters in Game-Theoretic Rough Sets , 2011, RSKT.

[8]  Dun Liu,et al.  Multiple-Category Classification with Decision-Theoretic Rough Sets , 2010, RSKT.

[9]  Yiyu Yao,et al.  Attribute reduction in decision-theoretic rough set models , 2008, Inf. Sci..

[10]  Manish Sarkar,et al.  Rough-fuzzy functions in classification , 2002, Fuzzy Sets Syst..

[11]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[12]  Qin Liu,et al.  An approach to decision making based on intuitionistic fuzzy rough sets over two universes , 2013, J. Oper. Res. Soc..

[13]  S. K. Wong,et al.  Comparison of the probabilistic approximate classification and the fuzzy set model , 1987 .

[14]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[15]  Osama A. E. Tantawy,et al.  On rough approximations via ideal , 2013, Inf. Sci..

[16]  Jingtao Yao,et al.  Game-Theoretic Rough Sets , 2011, Fundam. Informaticae.

[17]  Min Chen,et al.  Rough Cluster Quality Index Based on Decision Theory , 2009, IEEE Transactions on Knowledge and Data Engineering.

[18]  Bingzhen Sun,et al.  Dominance‐based rough set theory over interval‐valued information systems , 2014, Expert Syst. J. Knowl. Eng..

[19]  Witold Pedrycz,et al.  Granular Computing: Analysis and Design of Intelligent Systems , 2013 .

[20]  Witold Pedrycz,et al.  Multi-label classification by exploiting label correlations , 2014, Expert Syst. Appl..

[21]  Jingtao Yao,et al.  A Multi-agent Decision-Theoretic Rough Set Model , 2010, RSKT.

[22]  Xizhao Wang,et al.  Nested structure in parameterized rough reduction , 2013, Inf. Sci..

[23]  Witold Pedrycz,et al.  Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing , 2014, Eur. J. Oper. Res..

[24]  Yiyu Yao,et al.  On Generalizing Rough Set Theory , 2003, RSFDGrC.

[25]  Salvatore Greco,et al.  Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets , 2005, RSFDGrC.

[26]  Wei-Zhi Wu,et al.  Upper and Lower Probabilities of Fuzzy Events Induced by a Fuzzy Set-Valued Mapping , 2005, RSFDGrC.

[27]  Wojciech Ziarko,et al.  Variable Precision Rough Sets with Asymmetric Bounds , 1993, RSKD.

[28]  Ching-Chiang Yeh,et al.  Going-concern prediction using hybrid random forests and rough set approach , 2014, Inf. Sci..

[29]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[30]  Yiyu Yao,et al.  Bayesian Decision Theory for Dominance-Based Rough Set Approach , 2007, RSKT.

[31]  Huaxiong Li,et al.  Risk Decision Making Based on Decision-theoretic Rough Set: A Three-way View Decision Model , 2011 .

[32]  Min Chen,et al.  Semi-supervised Rough Cost/Benefit Decisions , 2009, Fundam. Informaticae.

[33]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[34]  Min Chen,et al.  Rough Multi-category Decision Theoretic Framework , 2008, RSKT.

[35]  Guoyin Wang,et al.  Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing , 2003, Lecture Notes in Computer Science.

[36]  Yiyu Yao,et al.  Relational Interpretations of Neigborhood Operators and Rough Set Approximation Operators , 1998, Inf. Sci..

[37]  Jason R. SwanSchool Rough Set Based Decision Model in Information Retrieval and Filtering , 2007 .

[38]  Witold Pedrycz,et al.  Granular Computing: Perspectives and Challenges , 2013, IEEE Transactions on Cybernetics.

[39]  Nan Zhang,et al.  Hierarchical rough decision theoretic framework for text classification , 2010, 9th IEEE International Conference on Cognitive Informatics (ICCI'10).

[40]  Da Ruan,et al.  Probabilistic model criteria with decision-theoretic rough sets , 2011, Inf. Sci..

[41]  Yiyu Yao,et al.  Three-way Investment Decisions with Decision-theoretic Rough Sets , 2011, Int. J. Comput. Intell. Syst..

[42]  Zhou Xianzhong,et al.  Two decades'research on decision-theoretic rough sets , 2010, 9th IEEE International Conference on Cognitive Informatics (ICCI'10).

[43]  Yiyu Yao,et al.  Naive Bayesian Rough Sets , 2010, RSKT.

[44]  Zhoujun Li,et al.  A novel variable precision (θ, σ)-fuzzy rough set model based on fuzzy granules , 2014, Fuzzy Sets Syst..

[45]  Francisco Herrera,et al.  Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects , 2014, Inf. Sci..

[46]  Yiyu Yao,et al.  Three-way decisions with probabilistic rough sets , 2010, Inf. Sci..

[47]  Dominik Slezak,et al.  The investigation of the Bayesian rough set model , 2005, Int. J. Approx. Reason..

[48]  Yiyu Yao,et al.  Decision-Theoretic Rough Set Models , 2007, RSKT.

[49]  Lei Zhou,et al.  Variable-precision-dominance-based rough set approach to interval-valued information systems , 2013, Inf. Sci..

[50]  Sun Bing,et al.  Variable precision probabilistic rough set model , 2005 .

[51]  Bingzhen Sun,et al.  On relationship between probabilistic rough set and Bayesian risk decision over two universes , 2012, Int. J. Gen. Syst..

[52]  Qiang Shen,et al.  Finding rough and fuzzy-rough set reducts with SAT , 2014, Inf. Sci..

[53]  Joseph P. Herbert,et al.  Criteria for choosing a rough set model , 2009, Comput. Math. Appl..

[54]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[55]  Guoyin Wang,et al.  Automatically Determining the Number of Clusters Using Decision-Theoretic Rough Set , 2011, RSKT.

[56]  Chengqi Zhang,et al.  An information filtering model on the Web and its application in JobAgent , 2000, Knowl. Based Syst..

[57]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[58]  Tianrui Li,et al.  Composite rough sets for dynamic data mining , 2014, Inf. Sci..

[59]  Jouni Järvinen On the Structure of Rough Approximations , 2002, Fundam. Informaticae.

[60]  Witold Pedrycz,et al.  Building the fundamentals of granular computing: A principle of justifiable granularity , 2013, Appl. Soft Comput..

[61]  Witold Pedrycz,et al.  From Numeric to Granular Description and Interpretation of Information Granules , 2013, Fundam. Informaticae.

[62]  Dun Liu,et al.  Attribute Reduction in Decision-Theoretic Rough Set Model: A Further Investigation , 2011, RSKT.

[63]  Weihua Xu,et al.  A novel cognitive system model and approach to transformation of information granules , 2014, Int. J. Approx. Reason..

[64]  Yiyu Yao,et al.  Probabilistic approaches to rough sets , 2003, Expert Syst. J. Knowl. Eng..

[65]  Salvatore Greco,et al.  Parameterized rough set model using rough membership and Bayesian confirmation measures , 2008, Int. J. Approx. Reason..

[66]  Bingzhen Sun,et al.  Probabilistic rough set over two universes and rough entropy , 2012, Int. J. Approx. Reason..

[67]  Huaxiong Li,et al.  Risk Decision Making Based on Decision-theoretic Rough Set: A Three-way View Decision Model , 2011, Int. J. Comput. Intell. Syst..

[68]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[69]  Xiaole Bai,et al.  A study of rough sets based on 1-neighborhood systems , 2013, Inf. Sci..

[70]  U. Wybraniec-Skardowska On a generalization of approximation space , 1989 .

[71]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[72]  Witold Pedrycz,et al.  International Journal of Approximate Reasoning Triangular Fuzzy Decision-theoretic Rough Sets , 2022 .