Under‐saturation of quarks at early stages of relativistic nuclear collisions: The hot glue initial scenario and its observable signatures

The early stage of high multiplicity nuclear collisions is represented by a nearly quarkless, hot, deconfined pure gluon plasma. These new scenario should be characterized by a suppression of high pT photons and dileptons as well as by reduced baryon to meson ratios. We present the numerical results for central Pb+Pb collisions at the LHC energies by using the ideal Bjorken hydrodynamics with time-dependent quark fugacity. It is shown that about 25 % of final total entropy is generated during the hydrodynamic evolution of chemically undersaturated quark-gluon plasma. (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  H. Stoecker,et al.  Glueballs amass at the RHIC and LHC! the early quarkless first-order phase transition at T = 270 MeV - From pure Yang-Mills glue plasma to Hagedorn glueball states , 2015, 1509.00160.

[2]  T. Neuhaus,et al.  Critical point and scale setting in SU(3) plasma: An update , 2015, 1503.05652.

[3]  V. Greco,et al.  Quarks production in the quark–gluon plasma created in relativistic heavy ion collisions , 2015, 1502.04596.

[4]  J. Uphoff,et al.  Elliptic flow and nuclear modification factor in ultrarelativistic heavy-ion collisions within a partonic transport model. , 2014, Physical review letters.

[5]  A. Monnai Thermal photon v 2 with slow quark chemical equilibration , 2014, 1403.4225.

[6]  C. Greiner,et al.  Thermalization of Hadrons via Hagedorn States , 2014, 1402.1458.

[7]  Fuming Liu,et al.  Quark-gluon plasma formation time and direct photons from heavy ion collisions , 2012, 1212.6587.

[8]  T. B. Skaali,et al.  Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at root s(NN)=2.76 TeV , 2013, 1304.0347.

[9]  L. Mclerran,et al.  Thermalization and Bose-Einstein Condensation in Overpopulated Glasma , 2012, 1210.6838.

[10]  V. Greco,et al.  Quark-to-gluon composition of the quark-gluon plasma in relativistic heavy-ion collisions , 2012, 1202.2262.

[11]  Z. Fodor,et al.  Precision SU(3) lattice thermodynamics for a large temperature range , 2012, 1204.6184.

[12]  H. Stoecker,et al.  Longitudinal fluid-dynamics for ultrarelativistic heavy-ion collisions , 2006, hep-ph/0606074.

[13]  C. Greiner,et al.  Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade , 2004, hep-ph/0406278.

[14]  S. Rasanen,et al.  Photon production from non-equilibrium QGP in heavy ion collisions , 2004, nucl-th/0403040.

[15]  Niels Bohr Institute,et al.  Collective deceleration of ultrarelativistic nuclei and creation of quark-gluon plasma. , 2001, Physical review letters.

[16]  R. Choudhury,et al.  Hard photon production from unsaturated quark–gluon plasma at two-loop level , 2001, hep-ph/0104134.

[17]  F. Karsch Lattice results on QCD thermodynamics , 2001, hep-ph/0103314.

[18]  L. Csernai,et al.  Initial state of ultrarelativistic heavy ion collisions , 2000, hep-ph/0010307.

[19]  A. Krasnitz,et al.  Initial gluon multiplicity in heavy-ion collisions. , 2000, Physical review letters.

[20]  D. Rischke,et al.  Chemical equilibration of quarks and gluons at RHIC and LHC energies , 1999, nucl-th/9908004.

[21]  P. Roy,et al.  Quark Gluon Plasma Diagnostics in a Successive Equilibrium Scenario , 1997, nucl-th/9706034.

[22]  K. Eskola,et al.  Baryon-to-entropy ratio in very high energy nuclear collisions , 1996, nucl-th/9610015.

[23]  Thoma,et al.  Photon emission from a parton gas at chemical nonequilibrium. , 1995, Physical review. C, Nuclear physics.

[24]  Alam,et al.  Successive equilibration in quark-gluon plasma. , 1994, Physical review letters.

[25]  R. Venugopalan,et al.  Computing quark and gluon distribution functions for very large nuclei. , 1993, Physical review. D, Particles and fields.

[26]  Biró,et al.  Parton equilibration in relativistic heavy ion collisions. , 1993, Physical review. C, Nuclear physics.

[27]  E. Shuryak,et al.  Two-stage equilibration in high energy heavy ion collisions. , 1992, Physical review letters.

[28]  M. Gyulassy,et al.  HIGING: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. , 1991, Physical review. D, Particles and fields.

[29]  Seibert,et al.  High-energy photons from quark-gluon plasma versus hot hadronic gas. , 1991, Physical review. D, Particles and fields.

[30]  B. Kämpfer,et al.  Correlations between dilepton yields and pion multiplicities as probe of the deconfinement transition , 1990 .

[31]  S. Raha Dilepton, Diphoton and Photon Production in Preequilibrium , 1990 .

[32]  Hwa,et al.  Diagnosing quark matter by measuring the total entropy and the photon or dilepton emission rates. , 1985, Physical review. D, Particles and fields.

[33]  E. Levin,et al.  Semihard processes in QCD , 1983 .

[34]  H. Satz,et al.  The latent heat of deconfinement in SU(3) Yang-Mills theory , 1983 .

[35]  H. Satz,et al.  THE ORDER OF THE DECONFINEMENT TRANSITION IN SU(3) YANG-MILLS THEORY , 1983 .

[36]  James D. Bjorken,et al.  Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region , 1983 .

[37]  L. Hove,et al.  High-energy hadron-hadron collisions and internal hadron structure , 1975 .