Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging

Abstract. Expanding usage of small animal models in biomedical research necessitates development of technologies for structural, functional, or molecular imaging that can be readily integrated in the biological laboratory. Herein, we consider dual multispectral optoacoustic (OA) and ultrasound tomography based on curved ultrasound detector arrays and describe the performance achieved for hybrid morphological and physiological brain imaging of mice in vivo. We showcase coregistered hemodynamic parameters resolved by OA tomography under baseline conditions and during alterations of blood oxygen saturation. As an internal reference, we provide imaging of abdominal organs. We illustrate the performance advantages of hybrid curved detector ultrasound and OA tomography and discuss immediate and long-term implications of our findings in the context of animal and human studies.

[1]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[2]  W Steenbergen,et al.  Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. , 2014, Optics express.

[3]  Paul Kinahan,et al.  Attenuation correction for a combined 3D PET/CT scanner. , 1998, Medical physics.

[4]  Daniel Razansky,et al.  Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. , 2015, Optics letters.

[5]  Patrick J. La Rivière,et al.  Comparison of intensity-modulated continuous-wave lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications , 2010, Biomedical optics express.

[6]  S. Gacinovic,et al.  Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]‐FP‐CIT SPECT imaging: The [123I]‐FP‐CIT study group , 2000, Movement disorders : official journal of the Movement Disorder Society.

[7]  Richard Su,et al.  Melanin nanoparticles as a novel contrast agent for optoacoustic tomography , 2015, Photoacoustics.

[8]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[9]  Rafat R. Ansari Biomedical Imaging: Principles and Applications , 2012 .

[10]  Alexander A. Oraevsky,et al.  “Contrast agents for optoacoustic imaging: design and biomedical applications” , 2015, Photoacoustics.

[11]  Vasilis Ntziachristos,et al.  Mesoscopic and macroscopic optoacoustic imaging of cancer. , 2015, Cancer research.

[12]  Alexander Graham Bell,et al.  Upon the production and reproduction of sound by light , 1880 .

[13]  Vasilis Ntziachristos,et al.  Advances in real-time multispectral optoacoustic imaging and its applications , 2015, Nature Photonics.

[14]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[15]  Pai-Chi Li,et al.  Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[16]  Vasilis Ntziachristos,et al.  Efficient non-negative constrained model-based inversion in optoacoustic tomography , 2015, Physics in medicine and biology.

[17]  V. Ntziachristos,et al.  FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–X-ray computed tomography , 2012, Nature Methods.

[18]  Vasilis Ntziachristos,et al.  Hybrid multiphoton and optoacoustic microscope. , 2014, Optics letters.

[19]  Vasilis Ntziachristos,et al.  Multispectral optoacoustic tomography of myocardial infarction , 2012, Photoacoustics.

[20]  Vasilis Ntziachristos,et al.  High resolution tumor targeting in living mice by means of multispectral optoacoustic tomography , 2012, EJNMMI Research.

[21]  Robert M Hoffman,et al.  Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. , 2009, Current opinion in biotechnology.

[22]  G. Farhat,et al.  Diagnostic ultrasound Imaging : Inside out , 2004 .

[23]  Lihong V. Wang,et al.  Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs , 2012, Science.

[24]  Jyh-Yeong Chang,et al.  Transcranial Imaging of Functional Cerebral Hemodynamic Changes in Single Blood Vessels using in vivo Photoacoustic Microscopy , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  T. Jernigan,et al.  Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study , 2002, Developmental medicine and child neurology.

[26]  Daniel Razansky,et al.  Noninvasive Real-Time Visualization of Multiple Cerebral Hemodynamic Parameters in Whole Mouse Brains Using Five-Dimensional Optoacoustic Tomography , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  Vasilis Ntziachristos,et al.  Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. , 2010, Optics express.

[28]  Vasilis Ntziachristos,et al.  Fast Multispectral Optoacoustic Tomography (MSOT) for Dynamic Imaging of Pharmacokinetics and Biodistribution in Multiple Organs , 2012, PloS one.

[29]  V. Ntziachristos Going deeper than microscopy: the optical imaging frontier in biology , 2010, Nature Methods.

[30]  Lihong V. Wang,et al.  Neurovascular Photoacoustic Tomography , 2010, Front. Neuroenerg..

[31]  Vasilis Ntziachristos,et al.  Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo , 2009 .

[32]  P. Beard Biomedical photoacoustic imaging , 2011, Interface Focus.

[33]  Lihong V. Wang,et al.  Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain , 2003, Nature Biotechnology.

[34]  W. Kalender X-ray computed tomography , 2006, Physics in medicine and biology.

[35]  Felix W Wehrli,et al.  MRI Estimation of Global Brain Oxygen Consumption Rate , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  Todd N. Erpelding,et al.  Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system , 2010, Biomedical optics express.

[37]  Andrew Needles,et al.  Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging , 2015, Nature Methods.

[38]  Lihong V. Wang,et al.  Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. , 2013, Optics letters.

[39]  Minghua Xu,et al.  Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Paul Kinahan,et al.  A combined PET/CT scanner for clinical oncology. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[41]  Hanzhang Lu,et al.  Noninvasive quantification of whole‐brain cerebral metabolic rate of oxygen (CMRO2) by MRI , 2009, Magnetic resonance in medicine.

[42]  岩城 隆昌,et al.  マウスの断面解剖アトラス = A color atlas of sectional anatomy of the mouse , 2002 .

[43]  Junjie Yao,et al.  Photoacoustic brain imaging: from microscopic to macroscopic scales , 2014, Neurophotonics.

[44]  A. Bell On the production and reproduction of sound by light , 1880, American Journal of Science.

[45]  Vasilis Ntziachristos,et al.  Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer , 2013, Journal of biomedical optics.

[46]  Vasilis Ntziachristos,et al.  Unmixing Molecular Agents From Absorbing Tissue in Multispectral Optoacoustic Tomography , 2014, IEEE Transactions on Medical Imaging.

[47]  Ketan Mehta,et al.  Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes , 2009, BiOS.

[48]  Martin Frenz,et al.  Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo , 2005, IEEE Transactions on Medical Imaging.

[49]  V. Ntziachristos,et al.  Molecular imaging by means of multispectral optoacoustic tomography (MSOT). , 2010, Chemical reviews.

[50]  Weili Lin,et al.  In vivo validation of the bold mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow , 1995, Int. J. Imaging Syst. Technol..

[51]  V. Ntziachristos,et al.  Video rate optoacoustic tomography of mouse kidney perfusion. , 2010, Optics letters.

[52]  Vasilis Ntziachristos,et al.  Multispectral optoacoustic tomography at 64, 128, and 256 channels , 2014, Journal of biomedical optics.

[53]  Massoud Motamedi,et al.  Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[54]  K Kubota,et al.  From tumor biology to clinical PET: A review of positron emission tomography (PET) in oncology , 2001, Annals of nuclear medicine.

[55]  Vasilis Ntziachristos,et al.  Multispectral Opto-acoustic Tomography (MSOT) of the Brain and Glioblastoma Characterization , 2013, NeuroImage.

[56]  Wei Wang,et al.  Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography , 2008, Proceedings of the IEEE.