Annotated Readings in the History of Statistics

Introduction.- The Introduction of the Concept of Expectation-Pascal (1654), Huygens (1657), and Pascal (1665).- The First Example of a Formal Test of Significance - Arbuthnott (1712).- The Evolution of the Principle of Inclusion and Exclusion - Montmort (1713) and Moivre (1756).- The First Example of the Method of Maximum Likelihood - Lambert (1760).- The Use of the Method of Maximum Probability to Derive the Normal Distribution - Gauss (1809).- The Determination of the Accuracy of Observations - Gauss (1816).- The Introduction of Asymptotic Efficiency - Laplace (1818).- The Distributions in Normal Samples of (a) the Sum of Squares about the Population Mean, (b) the Circular Sum of Squares of Successive Differences, and (c) the Circular Serial Correlation Coefficient - Ernst Abbe (1862).- Yule's Paradox (Simpson's Paradox) - Yule (1903).- Beginnings of Extreme- Value Theory - Bortkiewicz (1922) and Mises (1923).- The Evaluation of Tournament Outcomes - Zermelo (1929).- The Evolution of the Concept of Confidence Limits - Fisher (1930), Neyman (1934), and Fisher (1934).