The structure of a molybdopterin precursor. Characterization of a stable, oxidized derivative.

An oxidized pterin species, termed compound Z, has been isolated from molybdenum cofactor-deficient mutants of Escherichia coli and shown to be the direct product of oxidation of a molybdopterin precursor which accumulates in these mutants. The complete structural characterization of compound Z has been accomplished. A carbonyl function at C-1' of the 6-alkyl side chain can be reacted with 2,4-dinitrophenylhydrazine to yield a phenylhydrazone and can be reduced with borohydride, producing a mixture of two enantiomers, each with a hydroxyl group on C-1'. Compound Z contains one phosphate/pterin and no sulfur. The phosphate group is insensitive to alkaline phosphatase and to a number of phosphodiesterases but is quantitatively released as inorganic phosphate by mild acid hydrolysis. From 31P and 1H NMR of compound Z it was inferred that the phosphate is bound to C-2' and C-4' of a 4-carbon side chain, forming a 6-membered cyclic structure. Mass spectral analysis showed an MH+ ion with an exact mass of 344.0401 corresponding to the molecular formula C10H11N5O7P, confirming the proposed structure.