A Comparative Study on Generalization of Semantic Roles in FrameNet

A number of studies have presented machine-learning approaches to semantic role labeling with availability of corpora such as FrameNet and PropBank. These corpora define the semantic roles of predicates for each frame independently. Thus, it is crucial for the machine-learning approach to generalize semantic roles across different frames, and to increase the size of training instances. This paper explores several criteria for generalizing semantic roles in FrameNet: role hierarchy, human-understandable descriptors of roles, semantic types of filler phrases, and mappings from FrameNet roles to thematic roles of VerbNet. We also propose feature functions that naturally combine and weight these criteria, based on the training data. The experimental result of the role classification shows 19.16% and 7.42% improvements in error reduction rate and macro-averaged F1 score, respectively. We also provide in-depth analyses of the proposed criteria.

[1]  Eugene Charniak,et al.  Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking , 2005, ACL.

[2]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[3]  Xavier Carreras,et al.  Semantic Role Labeling: An Introduction to the Special Issue , 2008, Computational Linguistics.

[4]  Roberto Basili,et al.  Exploiting Syntactic and Shallow Semantic Kernels for Question Answer Classification , 2007, ACL.

[5]  Mirella Lapata,et al.  Using Semantic Roles to Improve Question Answering , 2007, EMNLP.

[6]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[7]  Daniel Gildea,et al.  Automatic Labeling of Semantic Roles , 2000, ACL.

[8]  Sanda M. Harabagiu,et al.  Question Answering Based on Semantic Structures , 2004, COLING.

[9]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[10]  Qinghua Zheng,et al.  Knowledge Element Extraction for Knowledge-Based Learning Resources Organization , 2007, ICWL.

[11]  Katrin Erk,et al.  Semantic role labelling with similarity-based generalization using EM-based clustering , 2004, SENSEVAL@ACL.

[12]  Lei Shi,et al.  Putting Pieces Together: Combining FrameNet, VerbNet and WordNet for Robust Semantic Parsing , 2005, CICLing.

[13]  Reid Swanson,et al.  Generalizing semantic role annotations across syntactically similar verbs , 2007, ACL.

[14]  Yasemin Altun,et al.  Broad-Coverage Sense Disambiguation and Information Extraction with a Supersense Sequence Tagger , 2006, EMNLP.

[15]  Eneko Agirre,et al.  Robustness and Generalization of Role Sets: PropBank vs. VerbNet , 2008, ACL.

[16]  Roberto Basili,et al.  Hierarchical Semantic Role Labeling , 2005, CoNLL.

[17]  Alessandro Moschitti,et al.  Semantic Role Labeling via FrameNet, VerbNet and PropBank , 2006, ACL.

[18]  Katrin Erk,et al.  SemEval-2007 Task 19: Frame Semantic Structure Extraction , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[19]  Sanda M. Harabagiu,et al.  Using Predicate-Argument Structures for Information Extraction , 2003, ACL.

[20]  Cosmin Adrian Bejan,et al.  UTD-SRL: A Pipeline Architecture for Extracting Frame Semantic Structures , 2007, SemEval@ACL.

[21]  Martha Palmer,et al.  Combining Lexical Resources: Mapping Between PropBank and VerbNet , 2006 .

[22]  Martha Palmer,et al.  Can Semantic Roles Generalize Across Genres? , 2007, NAACL.