Rotation of Biological Cells: Fundamentals and Applications

Abstract Cell rotation is one of the most important techniques for cell manipulation in modern bioscience, as it not only permits cell observation from any arbitrary angle, but also simplifies the procedures for analyzing the mechanical properties of cells, characterizing cell physiology, and performing microsurgery. Numerous approaches have been reported for rotating cells in a wide range of academic and industrial applications. Among them, the most popular are micro-robot-based direct contact manipulation and field-based non-contact methods (e.g., optical, magnetic, electric, acoustic, and hydrodynamic methods). This review first summarizes the fundamental mechanisms, merits, and demerits of these six main groups of approaches, and then discusses their differences and limitations in detail. We aim to bridge the gap between each method and illustrate the development progress, current advances, and prospects in the field of cell rotation.

[1]  Arnan Mitchell,et al.  Controlled rotation and vibration of patterned cell clusters using dielectrophoresis. , 2015, Analytical chemistry.

[2]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[3]  Weihua He,et al.  A cell electro‐rotation micro‐device using polarized cells as electrodes , 2018, Electrophoresis.

[4]  Li Zhang,et al.  Analysis of micro-fluidic tweezers in the Stokes regime , 2016 .

[5]  Roland Probst,et al.  Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms , 2011 .

[6]  Jing Chen,et al.  Fabricating Microstructures on Glass for Microfluidic Chips by Glass Molding Process , 2018, Micromachines.

[7]  Ivo Rendina,et al.  A Microfluidic Approach for Inducing Cell Rotation by Means of Hydrodynamic Forces , 2016, Sensors.

[8]  Dong Sun,et al.  Out-of-Plane Rotation Control of Biological Cells With a Robot-Tweezers Manipulation System for Orientation-Based Cell Surgery , 2019, IEEE Transactions on Biomedical Engineering.

[9]  Nynke H. Dekker,et al.  Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. , 2012, Nano letters.

[10]  Win Tun Latt,et al.  Visual Servoed Three-Dimensional Cell Rotation System , 2015, IEEE Transactions on Biomedical Engineering.

[11]  V. Zharov,et al.  Spectral evaluation of laser‐induced cell damage with photothermal microscopy , 2005, Lasers in surgery and medicine.

[12]  A. Rohrbach,et al.  Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria , 2012, Nature Photonics.

[13]  Li Zhang,et al.  Targeted cargo delivery using a rotating nickel nanowire. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[14]  Hisayuki Aoyama,et al.  Manipulation of particles based on swirl , 2018 .

[15]  Yo Tanaka Electric actuating valves incorporated into an all glass-based microchip exploiting the flexibility of ultra thin glass , 2013 .

[16]  I. Laffafian,et al.  Lipid-assisted microinjection: introducing material into the cytosol and membranes of small cells. , 1998, Biophysical journal.

[17]  Yi Yi,et al.  Remote Control of T Cell Activation Using Magnetic Janus Particles. , 2016, Angewandte Chemie.

[18]  Robert Malkin,et al.  Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer , 2017 .

[19]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[20]  A Sakanishi,et al.  The effects of alternative stress on the cell membrane deformability of chrysanthemum callus cells. , 2001, Colloids and surfaces. B, Biointerfaces.

[21]  Jan Huisken,et al.  Dynamic and non-contact 3D sample rotation for microscopy , 2018, Nature Communications.

[22]  Dahai Ren,et al.  Multiplexed Analysis for Anti-Epidermal Growth Factor Receptor Tumor Cell Growth Inhibition Based on Quantum Dot Probes. , 2016, Analytical chemistry.

[23]  Yuliang Xie,et al.  Acoustofluidic methods in cell analysis. , 2019, Trends in analytical chemistry : TRAC.

[24]  Po-Hsun Huang,et al.  Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells , 2019, Science Advances.

[25]  Mor Habaza,et al.  Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers. , 2015, Optics letters.

[26]  Daniel T Chiu,et al.  Controlled rotation of biological micro- and nano-particles in microvortices. , 2004, Lab on a chip.

[27]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[28]  Yasunari Kanda,et al.  A Method of Three-Dimensional Micro-Rotational Flow Generation for Biological Applications , 2016, Micromachines.

[29]  Baoli Yao,et al.  Observation of spin and orbital rotation of red blood cell in dual-beam fibre-optic trap with transverse offset , 2017 .

[30]  Mina J. Bissell,et al.  Coherent angular motion in the establishment of multicellular architecture of glandular tissues , 2012, Proceedings of the National Academy of Sciences.

[31]  Qiang Huang,et al.  Hydrodynamic Tweezers: Trapping and Transportation in Microscale Using Vortex Induced by Oscillation of a Single Piezoelectric Actuator , 2018, Sensors.

[32]  Y. N. Chow,et al.  Effects of young corn ear addition on nutritional composition and acceptability of conventional cake. , 2014 .

[33]  Ning Xi,et al.  Dynamics Analysis and Motion Planning for Automated Cell Transportation With Optical Tweezers , 2013, IEEE/ASME Transactions on Mechatronics.

[34]  Remy Elbez,et al.  Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell , 2011, PloS one.

[35]  Charles M Schroeder,et al.  A microfluidic-based hydrodynamic trap: design and implementation. , 2011, Lab on a chip.

[36]  Yaxiaer Yalikun,et al.  Oocyte all-surfaces’ imaging method using micro-scale rotational flow , 2018 .

[37]  Yaxiaer Yalikun,et al.  Thin glass micro-dome structure based microlens fabricated by accurate thermal expansion of microcavities , 2019 .

[38]  Win Tun Latt,et al.  Three-Dimensional Cell Rotation With Fluidic Flow-Controlled Cell Manipulating Device , 2016, IEEE/ASME Transactions on Mechatronics.

[39]  M. H. Nasr-Esfahani,et al.  Simple, fast, and efficient method of manual oocyte enucleation using a pulled Pasteur pipette , 2013, In Vitro Cellular & Developmental Biology - Animal.

[40]  Kishan Dholakia,et al.  Optoelectronic tweezers , 2005, Nature materials.

[41]  Takayuki Hoshino,et al.  A Bio-Manipulation Method Based on the Hydrodynamic Force of Multiple Microfluidic Streams , 2013, J. Robotics Mechatronics.

[42]  Thomas Laurell,et al.  Continuous flow two-dimensional acoustic orientation of nonspherical cells. , 2014, Analytical chemistry.

[43]  Metin Sitti,et al.  Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. , 2014, Lab on a chip.

[44]  Po-Hsun Huang,et al.  Digital acoustofluidics enables contactless and programmable liquid handling , 2018, Nature Communications.

[45]  Marco A. B. Andrade,et al.  Review of Progress in Acoustic Levitation , 2018 .

[46]  Reinhard Lakes-Harlan Lesion-induced insights in the plasticity of the insect auditory system , 2013, Front. Physiol..

[47]  Günter Reiss,et al.  Magnetic tweezers for manipulation of magnetic particles in single cells , 2014 .

[48]  Yi-Hsuan Su,et al.  Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels. , 2018, Sensors and actuators. B, Chemical.

[49]  Yu Ting Chow,et al.  Liquid Metal‐Based Multifunctional Micropipette for 4D Single Cell Manipulation , 2018, Advanced science.

[50]  Maximilian Reichert,et al.  Pancreas 3D Organoids: Current and Future Aspects as a Research Platform for Personalized Medicine in Pancreatic Cancer , 2017, Cellular and molecular gastroenterology and hepatology.

[51]  Peng Li,et al.  Acoustic tweezers for the life sciences , 2018, Nature Methods.

[52]  Shasha Peng,et al.  Rotational manipulation by acoustic radiation torque of high-order vortex beams generated by an artificial structured plate , 2018, Applied Physics Letters.

[53]  Jinwoo Cheon,et al.  Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells. , 2014, ACS nano.

[54]  R. Hölzel,et al.  Non-invasive determination of bacterial single cell properties by electrorotation. , 1999, Biochimica et biophysica acta.

[55]  Raktim Dasgupta,et al.  Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. , 2011, Optics express.

[56]  C. Dalton,et al.  Analysis of parasites by electrorotation , 2004, Journal of applied microbiology.

[57]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[58]  P. Kallio,et al.  Challenges in capillary pressure microinjection , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[59]  Satyandra K. Gupta,et al.  Indirect pushing based automated micromanipulation of biological cells using optical tweezers , 2014, Int. J. Robotics Res..

[60]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[61]  Yu Sun,et al.  Robotic Manipulation of Deformable Cells for Orientation Control , 2020, IEEE Transactions on Robotics.

[62]  V. Rybenkov,et al.  A Guide to Magnetic Tweezers and Their Applications , 2016, Front. Phys..

[63]  M. Teitell,et al.  Photothermal nanoblade for large cargo delivery into mammalian cells , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[64]  Nathan S Swami,et al.  Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth , 2014, Electrophoresis.

[65]  Ki-Ho Han,et al.  An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. , 2013, The Analyst.

[66]  H. Wijesinghe,et al.  Magnetic and hydrodynamic torques: Dynamics of superparamagnetic bead doublets , 2018, Journal of Magnetism and Magnetic Materials.

[67]  Ohmi Fuchiwaki,et al.  Multi-axial non-contact in situ micromanipulation by steady streaming around two oscillating cylinders on holonomic miniature robots , 2018, Microfluidics and Nanofluidics.

[68]  P Memmolo,et al.  Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. , 2013, Lab on a chip.

[69]  Yongxiang Feng,et al.  A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement. , 2019, Analytical chemistry.

[70]  Beijing Beijing,et al.  IEEE International Conference on Mechatronics and Automation , 2015 .

[71]  Denys Makarov,et al.  Asymmetric drag in oscillatory motion: ratchet effect without an asymmetric potential. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Tatsuo Arai,et al.  Multifunctional Noncontact Micromanipulation Using Whirling Flow Generated by Vibrating a Single Piezo Actuator. , 2019, Small.

[73]  Zhikun Zhan,et al.  A Review of Automated Microinjection of Zebrafish Embryos , 2018, Micromachines.

[74]  Luoran Shang,et al.  Design of capillary microfluidics for spinning cell-laden microfibers , 2018, Nature Protocols.

[75]  N. Carragher,et al.  Developments in preclinical cancer imaging: innovating the discovery of therapeutics , 2014, Nature Reviews Cancer.

[76]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[77]  A. Iritani,et al.  Micromanipulation of gametes for in vitro assisted fertilization , 1991, Molecular reproduction and development.

[78]  Nino F. Läubli,et al.  3D Manipulation and Imaging of Plant Cells using Acoustically Activated Microbubbles , 2019, Small Methods.

[79]  W. E. Moerner,et al.  Method for trapping and manipulating nanoscale objects in solution , 2005 .

[80]  Edmund Koch,et al.  Intrinsic Indicator of Photodamage during Label-Free Multiphoton Microscopy of Cells and Tissues , 2014, PloS one.

[81]  Lin Wang,et al.  A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. , 2014, Lab on a chip.

[82]  M. Davidson,et al.  Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination , 2012, Proceedings of the National Academy of Sciences.

[83]  H Kiesewetter,et al.  Low frequency electrorotation of fixed red blood cells. , 1998, Biophysical journal.

[84]  Yong Wang,et al.  In Vivo Manipulation of Single Biological Cells With an Optical Tweezers-Based Manipulator and a Disturbance Compensation Controller , 2017, IEEE Transactions on Robotics.

[85]  Yu Sun,et al.  Three-Dimensional Rotation of Mouse Embryos , 2012, IEEE Transactions on Biomedical Engineering.

[86]  M. Tanyeri,et al.  Hydrodynamic trap for single particles and cells. , 2010, Applied physics letters.

[87]  Natan T. Shaked,et al.  Rapid 3D Refractive‐Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation , 2016, Advanced science.

[88]  Deirdre R. Meldrum,et al.  Rotation of single live mammalian cells using dynamic holographic optical tweezers , 2017 .

[89]  S. Thomsen PATHOLOGIC ANALYSIS OF PHOTOTHERMAL AND PHOTOMECHANICAL EFFECTS OF LASER–TISSUE INTERACTIONS , 1991, Photochemistry and photobiology.

[90]  A Lenshof,et al.  Acoustofluidics 5: Building microfluidic acoustic resonators. , 2012, Lab on a chip.

[91]  J. Rodrigo,et al.  Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. , 2017, Biomedical optics express.

[92]  Y. Hosokawa Applications of the femtosecond laser-induced impulse to cell research , 2019, Japanese Journal of Applied Physics.

[93]  T J Flotte,et al.  Physical characteristics and biological effects of laser-induced stress waves. , 1996, Ultrasound in medicine & biology.

[94]  Changcheng Wu,et al.  Manipulation of Biological Cells Using a Robot-Aided Optical Tweezers System , 2018, Micromachines.

[95]  Ye Fang,et al.  Three-Dimensional Cell Cultures in Drug Discovery and Development. , 2017, SLAS discovery : advancing life sciences R & D.

[96]  Liang Huang,et al.  3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. , 2018, Lab on a chip.

[97]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[98]  Xin Zhao,et al.  Robotic Cell Rotation Based on the Minimum Rotation Force , 2015, IEEE Transactions on Automation Science and Engineering.

[99]  Evgeny V. Lyubin,et al.  Detection of Brownian Torque in a Magnetically-Driven Rotating Microsystem , 2016, Scientific Reports.

[100]  T. Karu,et al.  Photobiology of low-power laser effects. , 1989, Health physics.

[101]  Yu-Liang Chen,et al.  Electrorotation of a metallic coated Janus particle under AC electric fields , 2016 .

[102]  Jochen Guck,et al.  Stretching biological cells with light , 2002 .

[103]  F. Liang,et al.  Single-cell 3D electro-rotation. , 2018, Methods in cell biology.

[104]  Barry R Lutz,et al.  Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. , 2006, Analytical chemistry.

[105]  Kwanoh Kim,et al.  Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. , 2014, Nature communications.

[106]  Jun Wang,et al.  Probes for biomolecules detection based on RET-enhanced fluorescence polarization. , 2016, Biosensors & bioelectronics.

[107]  Jianbin Qiu,et al.  Visual Servoed Three-Dimensional Rotation Control in Zebrafish Larva Heart Microinjection System , 2018, IEEE Transactions on Biomedical Engineering.

[108]  Seungkyu Ha,et al.  Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance. , 2018, Biophysical journal.

[109]  Xu Liu,et al.  Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF. , 2018, Optics letters.

[110]  Halina Rubinsztein-Dunlop,et al.  Measuring local properties inside a cell‐mimicking structure using rotating optical tweezers , 2019, Journal of biophotonics.

[111]  Yoichiroh Hosokawa,et al.  Noncontact estimation of intercellular breaking force using a femtosecond laser impulse quantified by atomic force microscopy , 2011, Proceedings of the National Academy of Sciences.

[112]  J. Wu,et al.  Acoustical tweezers. , 1991, The Journal of the Acoustical Society of America.

[113]  Yaxiaer Yalikun,et al.  Accurate rotation of ultra-thin glass chamber for single-cell multidirectional observation , 2020, Applied Physics Express.

[114]  Zheng You,et al.  Self-Oscillation-Based Frequency Tracking for the Drive and Detection of Resonance Magnetometers , 2016, Sensors.

[115]  Li Zhang,et al.  Selective trapping and manipulation of microscale objects using mobile microvortices. , 2012, Nano letters.

[116]  Daniel Ahmed,et al.  Rotational manipulation of single cells and organisms using acoustic waves , 2016, Nature Communications.

[117]  Deirdre R. Meldrum,et al.  Characterization and comparison of three microfabrication methods to generate out-of-plane microvortices for single cell rotation and 3D imaging , 2016 .

[118]  Po-Hsun Huang,et al.  Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. , 2016, Small.

[119]  Sriram Subramanian,et al.  Holographic acoustic elements for manipulation of levitated objects , 2015, Nature Communications.

[120]  Michael D. Dickey,et al.  Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels , 2015 .

[121]  Andreas Offenhäusser,et al.  Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads. , 2015, The Review of scientific instruments.

[122]  Li Zhang,et al.  Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects , 2017 .

[123]  Peng Li,et al.  Controlling cell–cell interactions using surface acoustic waves , 2014, Proceedings of the National Academy of Sciences.

[124]  Jie Xu,et al.  Oscillating bubbles: a versatile tool for lab on a chip applications. , 2012, Lab on a chip.

[125]  Peng Li,et al.  Magnetic tweezers for the mechanical research of DNA at the single molecule level , 2017 .

[126]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[127]  Guigen Zhang,et al.  Elucidating the mechanism governing cell rotation under DEP using the volumetric polarization and integration method , 2018, Biomedical microdevices.

[128]  Chien Chern Cheah,et al.  Grasping and manipulation of a micro-particle using multiple optical traps , 2016, Autom..

[129]  Chen Feng,et al.  Autofocusing and Polar Body Detection in Automated Cell Manipulation , 2017, IEEE Transactions on Biomedical Engineering.

[130]  Anne Wald,et al.  Still and rotating myosin clusters determine cytokinetic ring constriction , 2016, Nature Communications.

[131]  Tatsuya Yamasoba,et al.  Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics , 2016, Nature Chemistry.

[132]  Alexander Rohrbach,et al.  How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures. , 2014, Optics express.

[133]  Paul Gaynor,et al.  AC electric field induced dipole-based on-chip 3D cell rotation. , 2014, Lab on a chip.

[134]  E. Sackmann,et al.  Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. , 1999, Biophysical journal.

[135]  Pierre Thibault,et al.  Controlled rotation and translation of spherical particles or living cells by surface acoustic waves. , 2017, Lab on a chip.

[136]  Joshua W Shaevitz,et al.  Introduction to Optical Tweezers. , 2017, Methods in molecular biology.

[137]  M. Feingold,et al.  Rotation of single bacterial cells relative to the optical axis using optical tweezers. , 2011, Optics letters.

[138]  Hyung Jin Sung,et al.  Cross-type optical particle separation in a microchannel. , 2008, Analytical chemistry.

[139]  Graeme Whyte,et al.  Optofluidic rotation of living cells for single‐cell tomography , 2015, Journal of biophotonics.

[140]  Wei Xiong,et al.  Characteristics of the orbital rotation in dual-beam fiber-optic trap with transverse offset. , 2016, Optics express.

[141]  Jon Dobson,et al.  Remote control of cellular behaviour with magnetic nanoparticles. , 2008, Nature nanotechnology.

[142]  Thomas Ziebart,et al.  Modulation of Tumor Cell Metabolism by Laser Photochemotherapy with Cisplatin or Zoledronic Acid In Vitro. , 2018, Anticancer research.

[143]  Yaowei Liu,et al.  Robotic Cell Rotation Based on Optimal Poking Direction , 2018, Micromachines.

[144]  Wenhui Wang,et al.  Multiple-Cylindrical Electrode System for Rotational Electric Field Generation in Particle Rotation Applications , 2015 .

[145]  Christian Dietrich,et al.  The optical cell rotator. , 2008, Optics express.

[146]  K. Dholakia,et al.  One-dimensional optically bound arrays of microscopic particles. , 2002, Physical review letters.

[147]  Liang Huang,et al.  Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation , 2016, Micromachines.

[148]  Yaxiaer Yalikun,et al.  Hydrodynamic vertical rotation method for a single cell in an open space , 2016 .

[149]  Fumihito Arai,et al.  On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. , 2019, Biomicrofluidics.

[150]  A. Suzuki,et al.  Observation of a single-beam gradient-force optical trap for dielectric particles in air. , 1997, Optics letters.

[151]  Prashanta Dutta,et al.  Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles. , 2016, Biomicrofluidics.

[152]  Yongxiang Feng,et al.  A microfluidic chip for single-cell 3D rotation enabling self-adaptive spatial localization , 2019 .

[153]  F. Liang,et al.  On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array , 2020, Biomedical microdevices.

[154]  Satyandra K. Gupta,et al.  Automated Manipulation of Biological Cells Using Gripper Formations Controlled By Optical Tweezers , 2014, IEEE Transactions on Automation Science and Engineering.

[155]  F. Arai,et al.  On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow , 2015, Microsystems & Nanoengineering.

[156]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[157]  James K. Mills,et al.  Automatic System for the Blastocyst Embryo Manipulation and Rotation , 2019, Annals of Biomedical Engineering.

[158]  Zev Bryant,et al.  Gold rotor bead tracking (AuRBT) for high-speed measurements of DNA twist, torque, and extension , 2014, Nature Methods.

[159]  Karen Volke-Sepúlveda,et al.  Generation of multiple vortex beam by means of active diffraction gratings , 2018 .

[160]  A. Idbaih,et al.  Structural and functional intratumor heterogeneities in glioblastoma: a spacetime odyssey at single-cell level. , 2017, Annals of oncology : official journal of the European Society for Medical Oncology.

[161]  B. Kirby,et al.  Automated electrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT. , 2016, Biomicrofluidics.

[162]  Peer Fischer,et al.  Holograms for acoustics , 2016, Nature.