Node profiles of symmetric digital search trees: Concentration properties

We give a detailed asymptotic analysis of the profiles of random symmetric digital search trees, which are in close connection with the performance of the search complexity of random queries in such trees. While the expected profiles have been analyzed for several decades, the analysis of the variance turns out to be very difficult and challenging, and requires the combination of several different analytic techniques, including Mellin and Laplace transforms, analytic de-Poissonization, and Laplace convolutions. Our results imply concentration of the profiles in the range where the mean tends to infinity. Moreover, we also obtain a two-point concentration for the distributions of the height and the saturation level.

[1]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[2]  Michael Drmota,et al.  Asymmetric Rényi Problem , 2019, Comb. Probab. Comput..

[3]  Helmut Prodinger Digital search trees and basic hypergeometric functions , 1995, Bull. EATCS.

[4]  Philippe Jacquet,et al.  Analytical Depoissonization and its Applications , 1998, Theor. Comput. Sci..

[5]  Guy Louchard,et al.  Average Profile of the Generalized Digital Search Tree and the Generalized Lempel-Ziv Algorithm , 1999, SIAM J. Comput..

[6]  Philippe Jacquet,et al.  Analytic Pattern Matching by Philippe Jacquet , 2015 .

[7]  J. Hüsler,et al.  Maxima of Poisson-like variables and related triangular arrays , 1997 .

[8]  Wojciech Szpankowski,et al.  Profile of Tries , 2008, LATIN.

[9]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[10]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[11]  Luc Devroye,et al.  Universal Asymptotics for Random Tries and PATRICIA Trees , 2005, Algorithmica.

[12]  Philippe Flajolet,et al.  On the performance evaluation of extendible hashing and trie searching , 1983, Acta Informatica.

[13]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[14]  Ramin Kazemi,et al.  The Variance of The Profile in Digital Search Trees , 2011, Discret. Math. Theor. Comput. Sci..

[15]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[16]  C. Anderson Extreme value theory for a class of discrete distributions with applications to some stochastic processes , 1970 .

[17]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[18]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[19]  Wojciech Szpankowski,et al.  Expected External Profile of PATRICIA Tries , 2014, ANALCO.

[20]  Wojciech Szpankowski,et al.  Limit laws for the height in PATRICIA tries , 2002, J. Algorithms.

[21]  Hsien-Kuei Hwang,et al.  An analytic approach to the asymptotic variance of trie statistics and related structures , 2013, Theor. Comput. Sci..

[22]  Alan G. Konheim,et al.  A note on growing binary trees , 1973, Discret. Math..

[23]  Wojciech Szpankowski,et al.  Profiles of Tries , 2008, SIAM J. Comput..

[24]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[25]  D. Aldous,et al.  A diffusion limit for a class of randomly-growing binary trees , 1988 .

[26]  Edward G. Coffman,et al.  File structures using hashing functions , 1970, CACM.

[27]  W. Szpankowski,et al.  On the Average Profile of Symmetric Digital Search Trees , 2008 .

[28]  Guy Louchard Exact and Asymptotic Distributions in Digital and Binary Search Trees , 1987, RAIRO Theor. Informatics Appl..

[29]  Chi-Chang Chen,et al.  The Maximum Partition Matching Problem with Applications , 1999, SIAM J. Comput..

[30]  Wojciech Szpankowski,et al.  Average Case Analysis of Algorithms on Sequences: Szpankowski/Average , 2001 .

[31]  Wojciech Szpankowski,et al.  Height in a digital search tree and the longest phrase of the Lempel-Ziv scheme , 2000, SODA '00.

[32]  T. F. Móri On random trees , 2002 .

[33]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[34]  Wojciech Szpankowski,et al.  Profiles of PATRICIA Tries , 2016, Algorithmica.

[35]  Michael Drmota,et al.  The expected profile of digital search trees , 2011, J. Comb. Theory, Ser. A.

[36]  Hsien-Kuei Hwang,et al.  Asymptotic variance of random symmetric digital search trees , 2009, Discret. Math. Theor. Comput. Sci..

[37]  Philippe Jacquet,et al.  Analytic Pattern Matching - From DNA to Twitter , 2015 .