Node profiles of symmetric digital search trees: Concentration properties
暂无分享,去创建一个
Michael Drmota | Hsien-Kuei Hwang | Ralph Neininger | Michael Fuchs | Michael Fuchs | Hsien-Kuei Hwang | M. Drmota | Ralph Neininger
[1] L. Rüschendorf,et al. A general limit theorem for recursive algorithms and combinatorial structures , 2004 .
[2] Michael Drmota,et al. Asymmetric Rényi Problem , 2019, Comb. Probab. Comput..
[3] Helmut Prodinger. Digital search trees and basic hypergeometric functions , 1995, Bull. EATCS.
[4] Philippe Jacquet,et al. Analytical Depoissonization and its Applications , 1998, Theor. Comput. Sci..
[5] Guy Louchard,et al. Average Profile of the Generalized Digital Search Tree and the Generalized Lempel-Ziv Algorithm , 1999, SIAM J. Comput..
[6] Philippe Jacquet,et al. Analytic Pattern Matching by Philippe Jacquet , 2015 .
[7] J. Hüsler,et al. Maxima of Poisson-like variables and related triangular arrays , 1997 .
[8] Wojciech Szpankowski,et al. Profile of Tries , 2008, LATIN.
[9] P. Flajolet,et al. Analytic Combinatorics: RANDOM STRUCTURES , 2009 .
[10] Donald E. Knuth,et al. The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .
[11] Luc Devroye,et al. Universal Asymptotics for Random Tries and PATRICIA Trees , 2005, Algorithmica.
[12] Philippe Flajolet,et al. On the performance evaluation of extendible hashing and trie searching , 1983, Acta Informatica.
[13] G. Andrews. The Theory of Partitions: Frontmatter , 1976 .
[14] Ramin Kazemi,et al. The Variance of The Profile in Digital Search Trees , 2011, Discret. Math. Theor. Comput. Sci..
[15] M. Drmota. Random Trees: An Interplay between Combinatorics and Probability , 2009 .
[16] C. Anderson. Extreme value theory for a class of discrete distributions with applications to some stochastic processes , 1970 .
[17] Hosam M. Mahmoud,et al. Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.
[18] Luc Devroye. Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..
[19] Wojciech Szpankowski,et al. Expected External Profile of PATRICIA Tries , 2014, ANALCO.
[20] Wojciech Szpankowski,et al. Limit laws for the height in PATRICIA tries , 2002, J. Algorithms.
[21] Hsien-Kuei Hwang,et al. An analytic approach to the asymptotic variance of trie statistics and related structures , 2013, Theor. Comput. Sci..
[22] Alan G. Konheim,et al. A note on growing binary trees , 1973, Discret. Math..
[23] Wojciech Szpankowski,et al. Profiles of Tries , 2008, SIAM J. Comput..
[24] Philippe Flajolet,et al. Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..
[25] D. Aldous,et al. A diffusion limit for a class of randomly-growing binary trees , 1988 .
[26] Edward G. Coffman,et al. File structures using hashing functions , 1970, CACM.
[27] W. Szpankowski,et al. On the Average Profile of Symmetric Digital Search Trees , 2008 .
[28] Guy Louchard. Exact and Asymptotic Distributions in Digital and Binary Search Trees , 1987, RAIRO Theor. Informatics Appl..
[29] Chi-Chang Chen,et al. The Maximum Partition Matching Problem with Applications , 1999, SIAM J. Comput..
[30] Wojciech Szpankowski,et al. Average Case Analysis of Algorithms on Sequences: Szpankowski/Average , 2001 .
[31] Wojciech Szpankowski,et al. Height in a digital search tree and the longest phrase of the Lempel-Ziv scheme , 2000, SODA '00.
[32] T. F. Móri. On random trees , 2002 .
[33] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[34] Wojciech Szpankowski,et al. Profiles of PATRICIA Tries , 2016, Algorithmica.
[35] Michael Drmota,et al. The expected profile of digital search trees , 2011, J. Comb. Theory, Ser. A.
[36] Hsien-Kuei Hwang,et al. Asymptotic variance of random symmetric digital search trees , 2009, Discret. Math. Theor. Comput. Sci..
[37] Philippe Jacquet,et al. Analytic Pattern Matching - From DNA to Twitter , 2015 .