Discrete multi-armed bandits and multi-parameter processes
暂无分享,去创建一个
[1] J. Snell. Applications of martingale system theorems , 1952 .
[2] J. Neveu,et al. Discrete Parameter Martingales , 1975 .
[3] John B. Walsh,et al. Stochastic integrals in the plane , 1975 .
[4] Alan S. Willsky,et al. Optional Sampling of Submartingales Indexed by Partially Ordered Sets, Optional Sampling of Submartingales. , 1979 .
[5] J. Gittins. Bandit processes and dynamic allocation indices , 1979 .
[6] Stopping rules and tactics for processes indexed by a directed set , 1981 .
[7] Robert J. Vanderbei,et al. Optimal stopping and supermartingales over partially ordered sets , 1981 .
[8] Peter Whittle,et al. Optimization Over Time , 1982 .
[9] Mathematical learning models--theory and algorithms : proceedings of a conference , 1983 .
[10] R. Hartley,et al. Optimisation Over Time: Dynamic Programming and Stochastic Control: , 1983 .
[11] Markov Strategies for Optimal Control Problems Indexed by a Partially Ordered Set , 1983 .
[12] Arrêt Optimal sur le Plan , 1983 .
[13] P. Varaiya,et al. Extension of the multi-armed bandit problem , 1983, The 22nd IEEE Conference on Decision and Control.
[14] I. Karatzas. Gittins Indices in the Dynamic Allocation Problem for Diffusion Processes , 1984 .
[15] Jean Walrand,et al. Extensions of the multiarmed bandit problem: The discounted case , 1985 .