CO2* Chemiluminescence in Premixed Flames

ABSTRACT Chemiluminescence from species such as CH*, C2*, OH* and CO2* often are used as a quantitative diagnostic in experimental studies of premixed combustion. This paper reports results from a numerical investigation of CO2* chemiluminescence as a quantitative diagnostic in laminar and turbulent premixed flames. Calculations are carried out using a complex reaction mechanism for methane and propane and a model for CO2* chemiluminescence. Relationships between chemiluminescent intensity and both H-atom concentration and heat release rate are quantified as functions of dilution, equivalence ratio, steady and unsteady strain-rate. These relationships are monotonic, but not unique; they depend on which flame parameter is varied. However, the effect of unsteadiness on the relationship for a strained flame is negligible, and this allows the use of chemiluminescence-based diagnostics for measurement of relative H-atom concentration and relative heat release rates in unsteady laminar and turbulent premixed fl...

[1]  C. L. Tien,et al.  Thermal Radiation Properties of Gases , 1969 .

[2]  W. Kaskan The source of the continuum in carbon monoxidehydrogen-air flames , 1959 .

[3]  J. Goldsmith Flame studies of atomic hydrogen and oxygen using resonant multiphoton optogalvanic spectroscopy , 1985 .

[4]  David S. Dandy,et al.  Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames , 1992 .

[5]  A. G. Gaydon The spectroscopy of flames , 1957 .

[6]  J. Daily,et al.  Low-frequency pressure oscillations in a model ramjet combustor , 1991, Journal of Fluid Mechanics.

[7]  S. Candel,et al.  Vortex-driven acoustically coupled combustion instabilities , 1987, Journal of Fluid Mechanics.

[8]  B. Myers,et al.  Shock‐Tube Study of the Radiative Processes in Systems Containing Atomic Oxygen and Carbon Monoxide at High Temperature , 1967 .

[9]  F. Egolfopoulos,et al.  A unified chain-thermal theory of fundamental flammability limits , 1992 .

[10]  R. Hartunian,et al.  Glow‐Discharge Shock Tube for Studying Chemiluminescent, Surface‐Catalytic, and Gas‐Phase Reaction Rates; Temperature Dependence of NO–O and CO–O Chemiluminescence , 1966 .

[11]  B. Mahan,et al.  Carbon Monoxide—Oxygen Atom Reaction , 1962 .

[12]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[13]  B. Thrush,et al.  Mechanism of chemiluminescent combination reactions involving oxygen atoms , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Craig T. Bowman,et al.  Non-equilibrium radical concentrations in shock-initiated methane oxidation , 1975 .

[15]  Craig T. Bowman,et al.  Combustor performance enhancement through direct shear layer excitation , 1990 .

[16]  F. Lacas,et al.  Recent developments in the coherent flamelet description of turbulent combustion , 1989 .

[17]  Richard A. Ashby Flames-- their structure, radiation and temperature, fourth edition , 1982 .

[18]  P. K. Barr,et al.  Premixed Combustion in a Periodic Flow Field. Part I: Experimental Investigation , 1994 .

[19]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[20]  J. Samaniego,et al.  Direct C2 radical imaging in combustion instabilities , 1992 .

[21]  U. Meier,et al.  Determination of absolute H atom concentrations in low-pressure flames by two-photon laser-excited fluorescence , 1988 .

[22]  William J. Pitz,et al.  Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock☆ , 1986 .

[23]  L. Goss,et al.  Images of the quenching of a flame by a vortex-To quantify regimes of turbulent combustion , 1993 .

[24]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[25]  E. T. Child,et al.  Spectrophotometric studies of laminar flames—I the decay of radical radiation , 1958 .

[26]  Thierry Poinsot,et al.  Low-frequency combustion instability mechanisms in a side-dump combustor , 1993 .

[27]  F. Egolfopoulos Dynamics and structure of unsteady, strained, laminar premixed flames , 1994 .

[28]  A. Thomas,et al.  Sound emission from open turbulent premixed flames , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  P. Clavin Dynamic behavior of premixed flame fronts in laminar and turbulent flows , 1985 .

[30]  H. Tsuji,et al.  Structure of highly turbulent premixed flames , 1992 .

[31]  Chung King Law,et al.  Dynamics of stretched flames , 1984 .

[32]  R. Borghi Turbulent combustion modelling , 1988 .

[33]  J. Diederichsen,et al.  Combustion instability: Radiation from premixed flames of variable burning velocity , 1965 .

[34]  C. Tien,et al.  Infrared Mean Absorption Coefficients of Luminous Flames and Smoke , 1978 .

[35]  R. M. Fristrom,et al.  Flames, their structure, radiation and temperature , 1960 .

[36]  Fokion N. Egolfopoulos,et al.  Unsteady counterflowing strained diffusion flames: diffusion-limited frequency response , 1996, Journal of Fluid Mechanics.