A bijective proof of the hook-length formula for skew shapes
暂无分享,去创建一个
[1] A.M Garsia,et al. A Rogers-Ramanujan Bijection , 1981, J. Comb. Theory, Ser. A.
[2] Hiroshi Naruse,et al. Excited Young diagrams and equivariant Schubert calculus , 2007 .
[3] Matjaz Konvalinka,et al. The Weighted Hook Length Formula III: Shifted Tableaux , 2010, Electron. J. Comb..
[4] Bruce E. Sagan,et al. On Selecting a Random Shifted Young Tableau , 1980, J. Algorithms.
[5] Greta Panova,et al. Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.
[6] Igor Pak,et al. The weighted hook length formula , 2010, J. Comb. Theory, Ser. A.
[7] S. Kerov,et al. A q-Analog of the Hook Walk Algorithm for Random Young Tableaux , 1993 .
[8] Ilse Fischer. A bijective proof of the hook-length formula for shifted standard tableaux , 2001 .
[9] Jeffrey B. Remmel,et al. A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..
[10] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[11] R. Thrall,et al. A combinatorial problem. , 1952 .
[12] Curtis Greene,et al. Another Probabilistic Method in the Theory of Young Tableaux , 1984, J. Comb. Theory, Ser. A.
[13] Greta Panova,et al. Hook formulas for skew shapes , 2015 .
[14] Christian Krattenthaler. An Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1998, Discret. Math. Theor. Comput. Sci..
[15] Adriano M. Garsia,et al. A Randomq, t-Hook Walk and a Sum of Pieri Coefficients , 1998, J. Comb. Theory A.
[16] Alfred Young,et al. The collected papers of Alfred Young 1873-1940 , 1977 .
[17] Doron Zeilberger,et al. A Bijective Proof of the Hook-Length Formula , 1982, J. Algorithms.
[18] Grigori Olshanski,et al. Shifted Schur Functions , 1996 .
[19] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[20] Gesammelte Abhandlungen , 1906, Nature.
[21] H. Wilf,et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .
[22] Greta Panova,et al. Asymptotics of the number of standard Young tableaux of skew shape , 2016, Eur. J. Comb..
[23] Christian Krattenthaler,et al. Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted , 1995, Electron. J. Comb..
[24] Igor Pak,et al. A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..
[25] Christian Krattenthaler. Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.
[26] Doron Zeilberger,et al. A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof , 1984, Discret. Math..
[27] Greta Panova,et al. Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.
[28] Nantel Bergeron,et al. RC-Graphs and Schubert Polynomials , 1993, Exp. Math..