A bijective proof of the hook-length formula for skew shapes

Abstract Recently, Naruse presented a beautiful cancellation-free hook-length formula for skew shapes. The formula involves a sum over objects called excited diagrams, and the term corresponding to each excited diagram has hook lengths in the denominator, like the classical hook-length formula due to Frame, Robinson and Thrall. In this extended abstract, we present a simple bijection that proves an equivalent recursive version of Naruse's result, in the same way that the celebrated hook-walk proof due to Green, Nijenhuis and Wilf gives a bijective (or probabilistic) proof of the hook-length formula for ordinary shapes. In particular, we also give a new bijective proof of the classical hook-length formula, quite different from the known proofs.

[1]  A.M Garsia,et al.  A Rogers-Ramanujan Bijection , 1981, J. Comb. Theory, Ser. A.

[2]  Hiroshi Naruse,et al.  Excited Young diagrams and equivariant Schubert calculus , 2007 .

[3]  Matjaz Konvalinka,et al.  The Weighted Hook Length Formula III: Shifted Tableaux , 2010, Electron. J. Comb..

[4]  Bruce E. Sagan,et al.  On Selecting a Random Shifted Young Tableau , 1980, J. Algorithms.

[5]  Greta Panova,et al.  Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.

[6]  Igor Pak,et al.  The weighted hook length formula , 2010, J. Comb. Theory, Ser. A.

[7]  S. Kerov,et al.  A q-Analog of the Hook Walk Algorithm for Random Young Tableaux , 1993 .

[8]  Ilse Fischer A bijective proof of the hook-length formula for shifted standard tableaux , 2001 .

[9]  Jeffrey B. Remmel,et al.  A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..

[10]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[11]  R. Thrall,et al.  A combinatorial problem. , 1952 .

[12]  Curtis Greene,et al.  Another Probabilistic Method in the Theory of Young Tableaux , 1984, J. Comb. Theory, Ser. A.

[13]  Greta Panova,et al.  Hook formulas for skew shapes , 2015 .

[14]  Christian Krattenthaler An Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1998, Discret. Math. Theor. Comput. Sci..

[15]  Adriano M. Garsia,et al.  A Randomq, t-Hook Walk and a Sum of Pieri Coefficients , 1998, J. Comb. Theory A.

[16]  Alfred Young,et al.  The collected papers of Alfred Young 1873-1940 , 1977 .

[17]  Doron Zeilberger,et al.  A Bijective Proof of the Hook-Length Formula , 1982, J. Algorithms.

[18]  Grigori Olshanski,et al.  Shifted Schur Functions , 1996 .

[19]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[20]  Gesammelte Abhandlungen , 1906, Nature.

[21]  H. Wilf,et al.  A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .

[22]  Greta Panova,et al.  Asymptotics of the number of standard Young tableaux of skew shape , 2016, Eur. J. Comb..

[23]  Christian Krattenthaler,et al.  Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted , 1995, Electron. J. Comb..

[24]  Igor Pak,et al.  A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..

[25]  Christian Krattenthaler Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.

[26]  Doron Zeilberger,et al.  A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof , 1984, Discret. Math..

[27]  Greta Panova,et al.  Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.

[28]  Nantel Bergeron,et al.  RC-Graphs and Schubert Polynomials , 1993, Exp. Math..