Hollow piezoelectric composites

Abstract Current research activity in piezoelectric sensors and actuators is moving toward better resolution and higher power densities. Higher resolution and smaller sizes are needed in applications such as biomedical ultrasound, probes for invasive procedures, flow noise control, non-destructive testing, and automotive instrumentation. Piezoelectric transducers with enclosed hollow space offer several special advantages including low acoustic impedance, reduced mass, sensitivity to weak hydrostatic waves, and enlarged displacements through flextensional and rotational motions. This paper describes recent advances in the processing and properties of five types of hollow piezoelectric composites with the connectivity patterns 0(0)-3, 1(0)-3, 2-0-2, 3-1(0) and 2(0)-2-2(0). Piezocomposites with hollow space included within the structure clearly demonstrate the advantages of functional composites in the field of smart systems.

[1]  K. Uchino Piezoelectric and Electrostrictive Actuators , 1986, Sixth IEEE International Symposium on Applications of Ferroelectrics.

[2]  T. Shrout,et al.  Extruded PZT/polymer composites for electromechanical transducer applications , 1980 .

[3]  H. Banno,et al.  Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles , 1983 .

[4]  H. Banno,et al.  Piezoelectric Properties at Polarization Reversal Process and Coercive Force of 0-3 Composite of Polymer and Ceramic Powder Mixture of PZT and PbTiO3 , 1991 .

[5]  L. E. Cross,et al.  Piezoelectric tubes and tubular composites for actuator and sensor applications , 1993, Journal of Materials Science.

[6]  Kenji Uchino,et al.  Metal–Ceramic Composite Actuators , 1992 .

[7]  R. Newnham,et al.  Zig-Zag Piezoelectric Actuators: Geometrical Control of Displacement and Resonance , 1995 .

[8]  Shoko Yoshikawa,et al.  Design optimization for metal-ceramic composite actuator, “moonie” , 1994 .

[9]  J. V. Biggers,et al.  Simplified fabrication of PZT/polymer composites , 1979 .

[10]  A. Safari,et al.  Development of fine scale and large area piezoelectric ceramic fiber / polymer composites for transducer applications , 1994 .

[11]  A. Safari,et al.  Transverse honeycomb composite transducers , 1982 .

[12]  Robert E. Newnham,et al.  Preparation of chemically etched piezoelectric resonators for density meters and viscometers , 1987 .

[13]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites , 1985, IEEE Transactions on Sonics and Ultrasonics.

[14]  R. Newnham,et al.  Piezoelectric 3–3 composites , 1982 .

[15]  Leslie E. Cross,et al.  Flexible composite transducers , 1978 .

[16]  Leslie E. Cross,et al.  Transverse piezoelectric mode composites: a new design approach for smart material applications , 1995, Smart Structures.

[17]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part II: Evaluation of Ultrasonic Medical Applications , 1985, IEEE Transactions on Sonics and Ultrasonics.

[18]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[19]  L. E. Cross,et al.  A high sensitivity hydrostatic piezoelectric transducer based on transverse piezoelectric mode honeycomb ceramic composites , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Robert E. Newnham,et al.  Composite Piezoelectric Transducers , 1980 .

[21]  K. Uchino,et al.  Capped ceramic hydrophones , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[22]  W. A. Smith,et al.  The role of piezocomposites in ultrasonic transducers , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[23]  Robert E. Newnham,et al.  PZT-epoxy piezoelectric transducers: A simplified fabrication procedure , 1981 .

[24]  Richard J. Meyer,et al.  Lead Zirconate Titanate Hollow‐Sphere Transducers , 1994 .

[25]  Aydin Dogan,et al.  Flextensional "moonie and Cymbal" Actuators. , 1994 .

[26]  L. E. Cross,et al.  A new transverse piezoelectric mode 2-2 piezocomposite for underwater transducer applications , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Robert E. Newnham,et al.  1-2-3 and 1-2-3-0 Piezoelectric Composites for Hydrophone Applications , 1986 .

[28]  J. V. Biggers,et al.  Composites of PZT and Epoxy for Hydrostatic Transducer Applications , 1981 .

[29]  Kenji Uchino,et al.  High displacement ceramic metal composite actuators (moonies) , 1994 .

[30]  K. Uchino,et al.  Composite flextensional transducers for sensing and actuating , 1994 .

[31]  Robert E. Newnham,et al.  An experimental and theoretical study of 1–3 AND 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications , 1986 .

[32]  A. Safari,et al.  (Pb, Bi)(Ti, Fe, Mn)O3/Polymer 0-3 composites for hydrophone applications , 1987 .

[33]  Kenji Uchino,et al.  Accelerometer Application of the Modified Moonie (Cymbal) Transducer , 1996 .

[34]  David Vilkomerson,et al.  Quasi-omnidirectional transducers for ultrasonic electronic-beacon guidance of invasive devices , 1992, SPIE Optics + Photonics.