Large receptive fields for optic flow detection in humans

[1]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[2]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[3]  D. Regan,et al.  Looming detectors in the human visual pathway , 1978, Vision Research.

[4]  D. Regan,et al.  Visual perception of changing size: The effect of object size , 1979, Vision Research.

[5]  Motion sensitivity measured by a psychophysical linearizing technique. , 1981, Journal of the Optical Society of America.

[6]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[7]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[8]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[9]  D Regan,et al.  Visual responses to vorticity and the neural analysis of optic flow. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[10]  J. Koenderink Optic flow , 1986, Vision Research.

[11]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[13]  D. Burr,et al.  Receptive field size of human motion detection units , 1987, Vision Research.

[14]  B. C. Motter,et al.  Functional properties of parietal visual neurons: radial organization of directionalities within the visual field , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[16]  K. Tanaka,et al.  Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[17]  David C. Burr,et al.  Receptive field properties of human motion detector units inferred from spatial frequency masking , 1989, Vision Research.

[18]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[19]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[20]  A. Verri,et al.  Differential techniques for optical flow , 1990 .

[21]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[22]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[23]  D. Burr,et al.  Spatial summation properties of directionally selective mechanisms in human vision. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[24]  J F Norman,et al.  The Detectability of Geometric Structure in Rapidly Changing Optical Patterns , 1991, Perception.

[25]  T. Freeman,et al.  Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure , 1992, Vision Research.

[26]  A. Verri,et al.  First-order analysis of optical flow in monkey brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Randolph Blake,et al.  Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion , 1994, Nature.

[28]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[29]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  G. Orban,et al.  The Speed Tuning of Medial Superior Temporal (Mst) Cell Responses to Optic-Flow Components , 1995, Perception.

[31]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[33]  Robert J. Snowden,et al.  The Effects of Adapting to Complex Motions: Position Invariance and Tuning to Spiral Motions , 1996, Journal of Cognitive Neuroscience.

[34]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[35]  B. McNaughton,et al.  Perception, memory, and emotion : frontiers in neuroscience , 1996 .

[36]  Jan J. Koenderink,et al.  Detection of first-order structure in optic flow fields , 1996, Vision Research.

[37]  K. Hoffmann,et al.  Optic Flow Processing in Monkey STS: A Theoretical and Experimental Approach , 1996, The Journal of Neuroscience.

[38]  P. Bex,et al.  Radial motion looks faster , 1997, Vision Research.