AN ADAPTIVE MULTIGRID TECHNIQUE FOR OPTION PRICING UNDER THE BLACK-SCHOLES MODEL

In this paper, we consider the adaptive multigrid method for solving the Black- Scholes equation to improve the efficiency of the option pricing. Adaptive meshing is generally regarded as an indispensable tool because of reduction of the computational costs. The Black- Scholes equation is discretized using a Crank-Nicolson scheme on block-structured adaptively refined rectangular meshes. And the resulting discrete equations are solved by a fast solver such as a multigrid method. Numerical simulations are performed to confirm the efficiency of the adaptive multigrid technique. In particular, through the comparison of computational results on adaptively refined mesh and uniform mesh, we show that adaptively refined mesh solver is superior to a standard method.

[1]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[2]  Myungjoo Kang,et al.  ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS , 2013 .

[3]  James S. Sochacki,et al.  The trade-offs between alternative finite difference techniques used to price derivative securities , 2000, Appl. Math. Comput..

[4]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[5]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[6]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[7]  Xiaonan Wu,et al.  A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..

[8]  P. Forsyth,et al.  PDE methods for pricing barrier options , 2000 .

[9]  Jürgen Topper Option pricing with finite elements , 2005 .

[10]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[11]  M. Broadie,et al.  Option Pricing: Valuation Models and Applications , 2004 .

[12]  A. M. Roma,et al.  Adaptive mesh refinement for micromagnetics simulations , 2006, IEEE Transactions on Magnetics.

[13]  Eduardo S. Schwartz,et al.  Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis , 1977 .

[14]  Kuldeep Shastri,et al.  Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques , 1985, Journal of Financial and Quantitative Analysis.

[15]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[16]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[17]  Jonas Persson,et al.  Pricing European multi-asset options using a space-time adaptive FD-method , 2007 .

[18]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[19]  Kenjiro T. Miura,et al.  Drawable Region of the Generalized Log Aesthetic Curves , 2013, J. Appl. Math..

[20]  Frank Cuypers Tools for Computational Finance , 2003 .

[21]  Bin Gao,et al.  The adaptive mesh model: a new approach to efficient option pricing , 1999 .

[22]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[23]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[24]  Jesús Vigo-Aguiar,et al.  On smoothing of the Crank-Nicolson scheme and higher order schemes for pricing barrier options , 2007 .

[25]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[26]  David J. Evans,et al.  Numerical volatility in option valuation from Black–Scholes equation by finite differences , 2004, Int. J. Comput. Math..

[27]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[28]  Antonino Zanette,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR LOCAL VOLATILITY EUROPEAN OPTION PRICING , 2004 .

[29]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[30]  Junseok Kim,et al.  AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION , 2012 .

[31]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[32]  Zhiqiang Zhou,et al.  Finite Element Multigrid Method for the Boundary Value Problem of Fractional Advection Dispersion Equation , 2013, J. Appl. Math..

[33]  Zili Zhu,et al.  A finite element platform for pricing path-dependent exotic options , 1999 .

[34]  Yves Achdou,et al.  Variational Analysis for the Black and Scholes Equation with Stochastic Volatility , 2002 .

[35]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[36]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[37]  Hongjoon Kim,et al.  A COST-EFFECTIVE MODIFICATION OF THE TRINOMIAL METHOD FOR OPTION PRICING , 2011 .

[38]  Junseok Kim,et al.  AN ACCURATE AND EFFICIENT NUMERICAL METHOD FOR BLACK-SCHOLES EQUATIONS , 2009 .

[39]  Jürgen Topper,et al.  Financial Engineering with Finite Elements , 2005 .

[40]  Fue-Sang Lien,et al.  Parallel Adaptive Mesh Refinement Combined with Additive Multigrid for the Efficient Solution of the Poisson Equation , 2012 .

[41]  D. A. Voss,et al.  Adaptive θ-methods for pricing American options , 2008 .

[42]  R. ZVANy,et al.  A GENERAL FINITE ELEMENT APPROACH FOR PDE OPTION PRICING MODELS , 2007 .

[43]  Gonzalo Cortazar,et al.  Simulation and Numerical Methods in Real Options Valuation , 2000 .

[44]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[45]  John B. Bell,et al.  Parallelization of structured, hierarchical adaptive mesh refinement algorithms , 2000 .

[46]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[47]  Mark Broadie,et al.  ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications , 2004, Manag. Sci..

[48]  Achi Brandt,et al.  Local mesh refinement multilevel techniques , 1987 .