A robust non‐linear mixed hybrid quadrilateral shell element

In the paper a non-linear quadrilateral shell element for the analysis of thin structures is presented. The variational formulation is based on a Hu–Washizu functional with independent displacement, stress and strain fields. The interpolation matrices for the mid-surface displacements and rotations as well as for the stress resultants and strains are specified. Restrictions on the interpolation functions concerning fulfillment of the patch test and stability are derived. The developed mixed hybrid shell element possesses the correct rank and fulfills the in-plane and bending patch test. Using Newton's method the finite element approximation of the stationary condition is iteratively solved. Our formulation can accommodate arbitrary non-linear material models for finite deformations. In the examples we present results for isotropic plasticity at finite rotations and small strains as well as bifurcation problems and post-buckling response. The essential feature of the new element is the robustness in the equilibrium iterations. It allows very large load steps in comparison to other element formulations. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Robert L. Taylor,et al.  A systematic construction of B‐bar functions for linear and non‐linear mixed‐enhanced finite elements for plane elasticity problems , 1999 .

[2]  T. Belytschko,et al.  A stabilization procedure for the quadrilateral plate element with one-point quadrature , 1983 .

[3]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[4]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[5]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[6]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .

[7]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[8]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[9]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[10]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[11]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[12]  J. Z. Zhu,et al.  The finite element method , 1977 .

[13]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[14]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .

[15]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[16]  F. Gruttmann,et al.  A linear quadrilateral shell element with fast stiffness computation , 2005 .

[17]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[18]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[19]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[20]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[21]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[22]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[23]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[24]  Werner Wagner,et al.  THEORY AND NUMERICS OF THREE-DIMENSIONAL BEAMS WITH ELASTOPLASTIC MATERIAL BEHAVIOUR ∗ , 2000 .

[25]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[26]  P. M. Naghdi,et al.  On the Derivation of Shell Theories by Direct Approach , 1974 .

[27]  Peter Wriggers,et al.  A nonlinear quadrilateral shell element with drilling degrees of freedom , 1992 .

[28]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[29]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[30]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[31]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[32]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[33]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[34]  F. Gruttmann,et al.  A stabilized one‐point integrated quadrilateral Reissner–Mindlin plate element , 2004 .

[35]  Boštjan Brank,et al.  On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element , 1997 .

[36]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[37]  L. Vu-Quoc,et al.  A class of simple and efficient degenerated shell elements-analysis of global spurious-mode filtering , 1989 .