Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts

[1]  S. Budd,et al.  Mitochondria and neuronal survival. , 2000, Physiological reviews.

[2]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[3]  M. Duchen,et al.  Glutamate‐induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones , 1999, The Journal of physiology.

[4]  Fabio Di Lisa,et al.  Chloromethyltetramethylrosamine (Mitotracker OrangeTM) Induces the Mitochondrial Permeability Transition and Inhibits Respiratory Complex I , 1999, The Journal of Biological Chemistry.

[5]  Jin-Moo Lee,et al.  The changing landscape of ischaemic brain injury mechanisms , 1999, Nature.

[6]  T. Klockgether,et al.  Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function , 1999, Brain Research.

[7]  M. Duchen,et al.  Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death , 1999, The Journal of physiology.

[8]  M. Ward,et al.  Oxidative Stress, Mitochondrial Function, and Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 1999, Journal of neurochemistry.

[9]  M. Huentelman,et al.  Sources of reactive oxygen species production in excitotoxin- stimulated cerebellar granule cells. , 1999, Biochemical and biophysical research communications.

[10]  Jianjie Ma,et al.  Mitochondrial Depolarization Accompanies Cytochrome cRelease During Apoptosis in PC6 Cells* , 1999, The Journal of Biological Chemistry.

[11]  S. Fesik,et al.  Bcl‐xL regulates apoptosis by heterodimerization‐dependent and ‐independent mechanisms , 1999, The EMBO journal.

[12]  Á. Almeida,et al.  Nitric oxide mediates glutamate-induced mitochondrial depolarization in rat cortical neurons , 1999, Brain Research.

[13]  S. Oikawa,et al.  Generation of hydrogen peroxide precedes loss of mitochondrial membrane potential during DNA alkylation‐induced apoptosis , 1999, FEBS letters.

[14]  R C Scaduto,et al.  Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. , 1999, Biophysical journal.

[15]  Miles W. Miller,et al.  Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice , 1999, Nature Medicine.

[16]  O. Hansson,et al.  Mitochondrial Control of Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[17]  I. Reynolds,et al.  Effects of Oxidants and Glutamate Receptor Activation on Mitochondrial Membrane Potential in Rat Forebrain Neurons , 1998, Journal of neurochemistry.

[18]  L M Loew,et al.  Intracellular fluorescent probe concentrations by confocal microscopy. , 1998, Biophysical journal.

[19]  H. Rottenberg,et al.  Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. , 1998, Biochimica et biophysica acta.

[20]  W. Müller,et al.  Altered Ca2+ Signaling and Mitochondrial Deficiencies in Hippocampal Neurons of Trisomy 16 Mice: A Model of Down’s Syndrome , 1998, The Journal of Neuroscience.

[21]  J M Dubinsky,et al.  Calcium‐induced activation of the mitochondrial permeability transition in hippocampal neurons , 1998, Journal of neuroscience research.

[22]  Ian J. Reynolds,et al.  Glutamate-induced neuron death requires mitochondrial calcium uptake , 1998, Nature Neuroscience.

[23]  D. Zorov,et al.  The lack of extracellular Na+ exacerbates Ca2+‐dependent damage of cultured cerebellar granule cells , 1998, FEBS letters.

[24]  S. Budd,et al.  Mitochondria and neuronal glutamate excitotoxicity. , 1998, Biochimica et biophysica acta.

[25]  S. Korsmeyer,et al.  Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis , 1998, The EMBO journal.

[26]  C. Gabriel,et al.  Flow cytometric study of mitochondrial dysfunction after AMPA receptor activation , 1998, Journal of neuroscience research.

[27]  T. Peng,et al.  Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. , 1998, Molecular pharmacology.

[28]  M. Esposti Inhibitors of NADH-ubiquinone reductase: an overview. , 1998 .

[29]  K. Hoyt,et al.  The role of intracellular Na+ and mitochondria in buffering of kainate‐induced intracellular free Ca2+ changes in rat forebrain neurones , 1998, The Journal of physiology.

[30]  J. Prehn,et al.  NMDA‐induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria , 1998, The European journal of neuroscience.

[31]  J. Farber,et al.  The Overexpression of Bax Produces Cell Death upon Induction of the Mitochondrial Permeability Transition* , 1998, The Journal of Biological Chemistry.

[32]  J. Prehn Mitochondrial transmembrane potential and free radical production in excitotoxic neurodegeneration , 1998, Naunyn-Schmiedeberg's Archives of Pharmacology.

[33]  J. Russell,et al.  Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling 1 Published on the World Wide Web on December 3rd 1997. 1 , 1998, Brain Research Reviews.

[34]  C. Schöneich,et al.  Loss of conformational stability in calmodulin upon methionine oxidation. , 1998, Biophysical journal.

[35]  J. B. Hutchins,et al.  Mitochondrial Manganese Superoxide Dismutase Prevents Neural Apoptosis and Reduces Ischemic Brain Injury: Suppression of Peroxynitrite Production, Lipid Peroxidation, and Mitochondrial Dysfunction , 1998, The Journal of Neuroscience.

[36]  A. Fattorossi,et al.  Is chloromethyl-X-rosamine useful in measuring mitochondrial transmembrane potential? , 1998, Cytometry.

[37]  L. Kiedrowski The difference between mechanisms of kainate and glutamate excitotoxicity in vitro: osmotic lesion versus mitochondrial depolarization. , 1998, Restorative neurology and neuroscience.

[38]  D. Green,et al.  Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD‐specific caspase activation and independently of mitochondrial transmembrane depolarization , 1998, The EMBO journal.

[39]  P. Carlen,et al.  In Vitro Ischemia Promotes Glutamate-Mediated Free Radical Generation and Intracellular Calcium Accumulation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[40]  C. Gabriel,et al.  Modulation of neuronal mitochondrial membrane potential by the NMDA receptor: role of arachidonic acid , 1997, Brain Research.

[41]  H. Rottenberg,et al.  Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. , 1997, Biochemical and biophysical research communications.

[42]  K. Hoyt,et al.  Trifluoperazine and dibucaine‐induced inhibition of glutamate‐induced mitochondrial depolarization in rat cultured forebrain neurones , 1997, British journal of pharmacology.

[43]  A. Nègre-Salvayre,et al.  A role for uncoupling protein‐2 as a regulator of mitochondrial hydrogen peroxide generation , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[44]  C. Franceschi,et al.  JC‐1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis , 1997, FEBS letters.

[45]  V. Mildažienė,et al.  Dependence of H2O2 Formation by Rat Heart Mitochondria on Substrate Availability and Donor Age , 1997, Journal of bioenergetics and biomembranes.

[46]  I. Reynolds,et al.  Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. , 1997, The Journal of physiology.

[47]  M. Poot,et al.  Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. , 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[48]  S. Budd,et al.  Mitochondria, Calcium Regulation, and Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 1996, Journal of neurochemistry.

[49]  G. Kroemer,et al.  Chloromethyl-X-Rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. , 1996, Cytometry.

[50]  V. Pinelis,et al.  Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge , 1996, FEBS letters.

[51]  E. Marra,et al.  Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells. , 1996, Neuroreport.

[52]  J. Lemasters,et al.  Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: evidence of the mitochondrial permeability transition. , 1996, Neuroscience.

[53]  S. Orrenius,et al.  Calcineurin and mitochondrial function in glutamate‐induced neuronal cell death , 1996, FEBS letters.

[54]  A. F. Schinder,et al.  Mitochondrial Dysfunction Is a Primary Event in Glutamate Neurotoxicity , 1996, The Journal of Neuroscience.

[55]  I. Reynolds,et al.  Mitochondrial Depolarization in Glutamate-Stimulated Neurons: An Early Signal Specific to Excitotoxin Exposure , 1996, The Journal of Neuroscience.

[56]  V. Pinelis,et al.  Dominant role of mitochondria in protection against a delayed neuronal Ca2+ overload induced by endogenous excitatory amino acids following a glutamate pulse , 1996, FEBS letters.

[57]  S. Thayer,et al.  Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. , 1996, Journal of neurophysiology.

[58]  R. Uzbekov,et al.  Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+‐dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria , 1996, FEBS letters.

[59]  V. Skulachev Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants , 1996, Quarterly Reviews of Biophysics.

[60]  Paolo Bernardi,et al.  The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal , 1996, Journal of bioenergetics and biomembranes.

[61]  G. Jas,et al.  Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. , 1996, Biochemistry.

[62]  V. Bindokas,et al.  Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  John Calvin Reed,et al.  Protective effect of transforming growth factor-beta 1 on beta-amyloid neurotoxicity in rat hippocampal neurons. , 1996, Molecular pharmacology.

[64]  A Masini,et al.  Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. , 1996, Experimental cell research.

[65]  Richard P. Haugland,et al.  Handbook of fluorescent probes and research chemicals , 1996 .

[66]  M. Tymianski Cytosolic calcium concentrations and cell death in vitro. , 1996, Advances in neurology.

[67]  G. Kroemer,et al.  Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo , 1995, European journal of immunology.

[68]  R. Miller,et al.  Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. Goldberg,et al.  Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  S. Lipton,et al.  Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function , 1995, Neuron.

[71]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[72]  A. Vercesi,et al.  Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. , 1995, The American journal of physiology.

[73]  M. Stern,et al.  Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. , 1995, The Journal of physiology.

[74]  I. Reynolds,et al.  Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  G. Kroemer,et al.  Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo , 1995, The Journal of experimental medicine.

[76]  R. White,et al.  Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  L. B. Chen,et al.  Mitochondrial membrane potential monitored by JC-1 dye. , 1995, Methods in enzymology.

[78]  E. Costa,et al.  Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. , 1995, Molecular pharmacology.

[79]  L. Loew,et al.  Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[80]  I. Reynolds,et al.  Glutamate-induced intracellular calcium changes and neurotoxicity in cortical neuronsin vitro: Effect of chemical ischemia , 1994, Neuroscience.

[81]  J. Dykens Isolated Cerebral and Cerebellar Mitochondria Produce Free Radicals when Exposed to Elevated Ca2+ and Na+: Implications for Neurodegeneration , 1994, Journal of neurochemistry.

[82]  F S Fay,et al.  Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. , 1993, Biophysical journal.

[83]  C. Franceschi,et al.  A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). , 1993, Biochemical and biophysical research communications.

[84]  Charles Tator,et al.  Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  M. Duchen,et al.  Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. , 1992, The Journal of physiology.

[86]  Samuel Thayer,et al.  Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  M. Duchen,et al.  Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. , 1992, The Biochemical journal.

[88]  J. Bunting,et al.  Influx and efflux kinetics of cationic dye binding to respiring mitochondria. , 1992, Biophysical chemistry.

[89]  T. Smith,et al.  J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. , 1991, Biochemistry.

[90]  D L Farkas,et al.  Simultaneous imaging of cell and mitochondrial membrane potentials. , 1989, Biophysical journal.

[91]  L M Loew,et al.  Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. , 1988, Biophysical journal.

[92]  J. Lemasters,et al.  Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. , 1986, Biochimica et biophysica acta.

[93]  M L Walsh,et al.  Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy , 1981, The Journal of cell biology.

[94]  M L Walsh,et al.  Localization of mitochondria in living cells with rhodamine 123. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. Nicholls,et al.  Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. , 1980, The Biochemical journal.

[96]  D. Nicholls,et al.  The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. , 1978, The Biochemical journal.

[97]  K. Åkerman,et al.  Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane. , 1978, Biochimica et biophysica acta.

[98]  D. Nicholls,et al.  Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. , 1977, European journal of biochemistry.

[99]  D. Nicholls The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. , 1974, European journal of biochemistry.

[100]  H. Rottenberg,et al.  Calcium uptake and membrane potential in mitochondria. , 1974, Biochemistry.