Optical control of focal epilepsy in vivo with caged γ‐aminobutyric acid

There is enormous clinical potential in exploiting the spatial and temporal resolution of optical techniques to modulate pathophysiological neuronal activity, especially intractable focal epilepsy. We have recently utilized a new ruthenium‐based caged compound, ruthenium‐bipyridine‐triphenylphosphine–γ‐aminobutyric acid (RuBi‐GABA), which releases GABA when exposed to blue light, to rapidly terminate paroxysmal activity in vitro and in vivo.

[1]  Timothy W. Dunn,et al.  Photochemical control of endogenous ion channels and cellular excitability , 2008, Nature Methods.

[2]  S. Spencer,et al.  Outcomes of epilepsy surgery in adults and children , 2008, The Lancet Neurology.

[3]  J. Steinbach,et al.  Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light , 2007, Nature Neuroscience.

[4]  Samuel Wiebe,et al.  Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. , 2007, Brain : a journal of neurology.

[5]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[6]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[7]  A. L. Albright,et al.  Best-practice surgical techniques for intrathecal baclofen therapy. , 2006, Journal of neurosurgery.

[8]  M. Morrell Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? , 2006, Current opinion in neurology.

[9]  S. Rothman,et al.  Optical suppression of experimental seizures in rat brain slices , 2010, Epilepsia.

[10]  S. Rothman,et al.  Focal cooling rapidly terminates experimental neocortical seizures , 2001, Annals of neurology.

[11]  R. Macdonald,et al.  Rapid Seizure-Induced Reduction of Benzodiazepine and Zn2+ Sensitivity of Hippocampal Dentate Granule Cell GABAA Receptors , 1997, The Journal of Neuroscience.

[12]  O. Henriksen,et al.  Vagal nerve stimulation—the Norwegian experience , 2003, Seizure.

[13]  Orrin Devinsky,et al.  Transmeningeal delivery of GABA to control neocortical seizures in rats , 2007, Epilepsy Research.

[14]  Orrin Devinsky,et al.  Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: Therapeutic implications , 2009, Epilepsia.

[15]  Steve S. Chung,et al.  Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy , 2010, Epilepsia.

[16]  M. Avoli,et al.  Synchronous GABAA‐receptor‐dependent potentials in limbic areas of the in‐vitro isolated adult guinea pig brain , 2009, The European journal of neuroscience.

[17]  R S Fisher,et al.  Local Perfusion of Diazepam Attenuates Interictal and Ictal Events in the Bicuculline Model of Epilepsy in Rats , 1997, Epilepsia.

[18]  Josemir W Sander The Natural History of Epilepsy in the Era of New Antiepileptic Drugs and Surgical Treatment , 2003, Epilepsia.

[19]  D. Kullmann,et al.  Multiple and Plastic Receptors Mediate Tonic GABAA Receptor Currents in the Hippocampus , 2005, The Journal of Neuroscience.

[20]  C. Zorumski,et al.  NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue , 2009, The Journal of physiology.

[21]  Rafael Yuste,et al.  Photorelease of GABA with Visible Light Using an Inorganic Caging Group , 2008, Frontiers in neural circuits.

[22]  S. Rothman,et al.  Optical suppression of seizure-like activity with an LED , 2007, Epilepsy Research.

[23]  Aloka S. Amarakone,et al.  Rapid Cooling Aborts Seizure‐Like Activity in Rodent Hippocampal‐Entorhinal Slices , 2000, Epilepsia.

[24]  Karl Deisseroth,et al.  Optogenetic control of epileptiform activity , 2009, Proceedings of the National Academy of Sciences.