Angular gyrus: an anatomical case study for association cortex

[1]  K. Rockland Clustered Intrinsic Connections: Not a Single System , 2022, Frontiers in Systems Neuroscience.

[2]  M. Schnitzer,et al.  Emergent reliability in sensory cortical coding and inter-area communication , 2022, Nature.

[3]  Laurent Udo Perrinet,et al.  Revisiting horizontal connectivity rules in V1: from like-to-like towards like-to-all , 2022, Brain Structure and Function.

[4]  R. Caminiti,et al.  The functional characterization of callosal connections , 2021, Progress in Neurobiology.

[5]  OUP accepted manuscript , 2022, Cerebral Cortex.

[6]  F. Polleux,et al.  Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex , 2022, Frontiers in Neural Circuits.

[7]  Refocusing neuroscience: moving away from mental categories and towards complex behaviours , 2021, Philosophical Transactions of the Royal Society B.

[8]  B. Varga,et al.  Periods of synchronized myelin changes shape brain function and plasticity , 2021, Nature Neuroscience.

[9]  K. Weiner,et al.  The relationship between transcription and eccentricity in human V1 , 2021, Brain Structure and Function.

[10]  Brian R. Lee,et al.  Human neocortical expansion involves glutamatergic neuron diversification , 2021, Nature.

[11]  J. Lübke,et al.  Sublamina-Specific Dynamics and Ultrastructural Heterogeneity of Layer 6 Excitatory Synaptic Boutons in the Adult Human Temporal Lobe Neocortex , 2021, Cerebral cortex.

[12]  M. Malmierca,et al.  Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems , 2021, Frontiers in Neural Circuits.

[13]  S. Kastner,et al.  Overlapping Neuronal Population Responses in the Human Parietal Cortex during Visuospatial Attention and Arithmetic Processing , 2021, Journal of Cognitive Neuroscience.

[14]  J. Vickers,et al.  Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net , 2021, Brain Structure and Function.

[15]  J. Krakauer,et al.  Two views on the cognitive brain , 2021, Nature Reviews Neuroscience.

[16]  Mark Ellisman,et al.  Nanoscale 3D EM reconstructions reveal intrinsic mechanisms of structural diversity of chemical synapses , 2021, Cell reports.

[17]  J. DeFelipe,et al.  Variation in Pyramidal Cell Morphology Across the Human Anterior Temporal Lobe , 2021, Cerebral cortex.

[18]  Max F. K. Happel,et al.  The extracellular matrix regulates cortical layer dynamics and cross-columnar frequency integration in the auditory cortex , 2021, Communications biology.

[19]  Karl Zilles,et al.  Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics , 2021, NeuroImage.

[20]  J. DeFelipe,et al.  Three-Dimensional Synaptic Organization of Layer III of the Human Temporal Neocortex , 2021, bioRxiv.

[21]  P. Arlotta,et al.  Neuron class–specific responses govern adaptive myelin remodeling in the neocortex , 2020, Science.

[22]  D. Fitzpatrick,et al.  Cortical response selectivity derives from strength in numbers of synapses , 2020, Nature.

[23]  D. Lewis,et al.  Postnatal Development of Glutamate and GABA Transcript Expression in Monkey Visual, Parietal, and Prefrontal Cortices. , 2020, Cerebral cortex.

[24]  Adam Kohn,et al.  Principles of Corticocortical Communication: Proposed Schemes and Design Considerations , 2020, Trends in Neurosciences.

[25]  Michael G. Müller,et al.  The location of the axon initial segment affects the bandwidth of spike initiation dynamics , 2020, PLoS Comput. Biol..

[26]  Rachael K. Blackman,et al.  Cognitive Control Errors in Nonhuman Primates Resembling Those in Schizophrenia Reflect Opposing Effects of NMDA Receptor Blockade on Causal Interactions Between Cells and Circuits in Prefrontal and Parietal Cortices. , 2020, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[27]  M. Pinsk,et al.  A causal role for pulvinar in coordinating task independent cortico-cortical interactions , 2020, bioRxiv.

[28]  Benjamin Scholl,et al.  Cortical synaptic architecture supports flexible sensory computations , 2020, Current Opinion in Neurobiology.

[29]  S. Grant,et al.  A single-synapse resolution survey of PSD95-positive synapses in twenty human brain regions , 2020, The European journal of neuroscience.

[30]  Olaf Sporns,et al.  Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture , 2019, Nature Neuroscience.

[31]  Viktor Jirsa,et al.  A mathematical model of ephaptic interactions in neuronal fiber pathways: Could there be more than transmission along the tracts? , 2019, bioRxiv.

[32]  Nicolas Caesar Petersen,et al.  Cortex-wide Changes in Extracellular Potassium Ions Parallel Brain State Transitions in Awake Behaving Mice. , 2019, Cell reports.

[33]  R. Turner Myelin and Modeling: Bootstrapping Cortical Microcircuits , 2019, Front. Neural Circuits.

[34]  Mark S. Cembrowski,et al.  Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons , 2019, Nature Reviews Neuroscience.

[35]  Selmaan N. Chettih,et al.  Single-neuron perturbations reveal feature-specific competition in V1 , 2019, Nature.

[36]  Kathleen S. Rockland,et al.  What do we know about laminar connectivity? , 2017, NeuroImage.

[37]  Rogier B. Mars,et al.  Large-scale comparative neuroimaging: Where are we and what do we need? , 2019, Cortex.

[38]  Saad Jbabdi,et al.  Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces , 2018, Trends in Cognitive Sciences.

[39]  Javier DeFelipe,et al.  Modifications of the axon initial segment during the hibernation of the Syrian hamster , 2018, Brain Structure and Function.

[40]  K. Rockland Axon Collaterals and Brain States , 2018, Front. Syst. Neurosci..

[41]  J. Lübke,et al.  Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis. , 2018, Cerebral cortex.

[42]  Maarten H. P. Kole,et al.  The electrical significance of axon location diversity , 2018, Current Opinion in Neurobiology.

[43]  Guy Eyal,et al.  Human Cortical Pyramidal Neurons: From Spines to Spikes via Models , 2018, bioRxiv.

[44]  Mark S. Cembrowski,et al.  Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites , 2018, Nature Neuroscience.

[45]  Elena Borra,et al.  Functional anatomy of the macaque temporo-parieto-frontal connectivity , 2017, Cortex.

[46]  Stefano Panzeri,et al.  Distinct timescales of population coding across cortex , 2017, Nature.

[47]  D. Amaral,et al.  Neural Reorganization Due to Neonatal Amygdala Lesions in the Rhesus Monkey: Changes in Morphology and Network Structure , 2017, Cerebral cortex.

[48]  K. Martin,et al.  A biological blueprint for the axons of superficial layer pyramidal cells in cat primary visual cortex , 2017, Brain Structure and Function.

[49]  Jennifer I. Luebke,et al.  Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks , 2017, Front. Neuroanat..

[50]  K. Martin,et al.  Synaptic connections formed by patchy projections of pyramidal cells in the superficial layers of cat visual cortex , 2017, Brain Structure and Function.

[51]  Jennifer I Luebke,et al.  Area‐Specific Features of Pyramidal Neurons—a Comparative Study in Mouse and Rhesus Monkey , 2016, Cerebral cortex.

[52]  Panayiota Poirazi,et al.  Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites , 2016, Cell reports.

[53]  Guy A Orban,et al.  Functional definitions of parietal areas in human and non-human primates , 2016, Proceedings of the Royal Society B: Biological Sciences.

[54]  Javier DeFelipe,et al.  The anatomical problem posed by brain complexity and size: a potential solution , 2015, Front. Neuroanat..

[55]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[56]  Kathleen S. Rockland,et al.  About connections , 2015, Front. Neuroanat..

[57]  Alcino J. Silva,et al.  Synaptic clustering within dendrites: An emerging theory of memory formation , 2015, Progress in Neurobiology.

[58]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[59]  K. Martin,et al.  Superficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex , 2014, Nature Communications.

[60]  P. J. Basser,et al.  Role of myelin plasticity in oscillations and synchrony of neuronal activity , 2014, Neuroscience.

[61]  Daniel R. Berger,et al.  Distinct Profiles of Myelin Distribution Along Single Axons of Pyramidal Neurons in the Neocortex , 2014, Science.

[62]  Kathleen S Rockland,et al.  Collateral branching of long‐distance cortical projections in monkey , 2013, The Journal of comparative neurology.

[63]  Hanna Damasio,et al.  Neural convergence and divergence in the mammalian cerebral cortex: From experimental neuroanatomy to functional neuroimaging , 2013, The Journal of comparative neurology.

[64]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[65]  Daniel J. R. Christensen,et al.  Sleep Drives Metabolite Clearance from the Adult Brain , 2013, Science.

[66]  M. Seghier The Angular Gyrus , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[67]  A. Schleicher,et al.  Organization of the Human Inferior Parietal Lobule Based on Receptor Architectonics , 2012, Cerebral cortex.

[68]  R. Adolphs,et al.  Changes in cortical morphology resulting from long-term amygdala damage. , 2012, Social cognitive and affective neuroscience.

[69]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[70]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[71]  J. DeFelipe,et al.  GABAergic complex basket formations in the human neocortex , 2010, The Journal of comparative neurology.

[72]  D. Xiao,et al.  Laminar and modular organization of prefrontal projections to multiple thalamic nuclei , 2009, Neuroscience.

[73]  T. Stanford,et al.  Multisensory integration: current issues from the perspective of the single neuron , 2008, Nature Reviews Neuroscience.

[74]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[75]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[76]  Kathleen S Rockland,et al.  Long‐distance corticocortical GABAergic neurons in the adult monkey white and gray matter , 2007, The Journal of comparative neurology.

[77]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[78]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[79]  I. Fujita,et al.  Organization of horizontal axons in the inferior temporal cortex and primary visual cortex of the macaque monkey. , 2005, Cerebral cortex.

[80]  H. Barbas,et al.  Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey , 2005, BMC Neuroscience.

[81]  David A Lewis,et al.  Cortical connections of the lateral mediodorsal thalamus in cynomolgus monkeys , 2004, The Journal of comparative neurology.

[82]  Kathleen S Rockland,et al.  Inferior parietal lobule projections to anterior inferotemporal cortex (area TE) in macaque monkey. , 2003, Cerebral cortex.

[83]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[84]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[85]  K. Zilles,et al.  Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex , 2001, NeuroImage.

[86]  K. Rockland,et al.  Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas , 2000, The Journal of comparative neurology.

[87]  R. McCarley,et al.  Abnormal angular gyrus asymmetry in schizophrenia. , 2000, The American journal of psychiatry.

[88]  E. Callaway,et al.  Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1 , 1998, Visual Neuroscience.

[89]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[90]  M. L. Pucak,et al.  Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex , 1998, The Journal of comparative neurology.

[91]  J. B. Levitt,et al.  Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46) , 1993, The Journal of comparative neurology.

[92]  A. Burkhalter Development of forward and feedback connections between areas V1 and V2 of human visual cortex. , 1993, Cerebral cortex.

[93]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[94]  Leslie G. Ungerleider,et al.  Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys , 1993, Visual Neuroscience.

[95]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[96]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[97]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[98]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[99]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[100]  T. Yin,et al.  Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatta , 1981, The Journal of comparative neurology.