The Geometry of Rimed Aggregate Snowflakes: A Modeling Study

[1]  Alexis Berne,et al.  Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014 , 2015 .

[2]  W. Rühm,et al.  Snow event classification with a 2D video disdrometer — A decision tree approach , 2016 .

[3]  Gabor Vali,et al.  Fall Patterns and Fall Velocities of Rimed Ice Crystals , 1972 .

[4]  David L. Mitchell,et al.  Mass-Dimensional Relationships for Ice Particles and the Influence of Riming on Snowfall Rates , 1990 .

[5]  Measurements of the Heat and Mass Transfer Parameters Characterizing Conical Graupel Growth , 1993 .

[6]  David L. Mitchell,et al.  Growth of ice particle mass and projected area during riming , 2016 .

[7]  J. Leinonen,et al.  Snowflake Melting Simulation Using Smoothed Particle Hydrodynamics , 2018 .

[8]  Alexis Berne,et al.  Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera , 2017 .

[9]  J. Coen,et al.  Influences of Storm-Embedded Orographic Gravity Waves on Cloud Liquid Water and Precipitation , 2000 .

[10]  W. Macklin The density and structure of ice formed by accretion , 1962 .

[11]  Radar scattering by aggregate snowflakes , 2005, physics/0505083.

[12]  J. Hallett,et al.  Droplet accretion during rime growth and the formation of secondary ice crystals , 1989 .

[13]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[14]  Peter V. Hobbs,et al.  Fall speeds and masses of solid precipitation particles , 1974 .

[15]  Andrew J. Heymsfield,et al.  The Dimensional Characteristics of Ice Crystal Aggregates from Fractal Geometry , 2010 .

[16]  Andrew J. Heymsfield,et al.  An Improved Approach to Calculating Terminal Velocities of Plate-like Crystals and Graupel , 1987 .

[17]  E. Weingartner,et al.  An Analysis of Accreted Drop Sizes and Mass on Rimed Snow Crystals , 1994 .

[18]  T. Harimaya,et al.  The riming proportion in snow particles falling on coastal areas , 1992 .

[19]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .

[20]  J. Curry,et al.  Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law. , 2005 .

[21]  M. Steiner,et al.  Ice crystal observations and the degree of riming in winter precipitation , 1993 .

[22]  Albert Rango,et al.  Rime and graupel: description and characterization as revealed by low-temperature scanning electron microscopy. , 2006, Scanning.

[23]  Jussi Leinonen,et al.  Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes , 2018 .

[24]  Jussi Leinonen,et al.  What do triple‐frequency radar signatures reveal about aggregate snowflakes? , 2015 .

[25]  P. Field,et al.  Theory of growth by differential sedimentation, with application to snowflake formation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Jussi Leinonen,et al.  Radar signatures of snowflake riming: A modeling study , 2015, Earth and space science.

[27]  A. Heymsfield,et al.  Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field Measurements , 2010 .

[28]  D. Mitchell Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities , 1996 .

[29]  J. Böhm A general hydrodynamic theory for mixed-phase microphysics. Part I: drag and fall speed of hydrometeors , 1992 .

[30]  Clifford A. Reiter A local cellular model for snow crystal growth , 2005 .

[31]  H. Böhm A General Equation for the Terminal Fall Speed of Solid Hydrometeors. , 1989 .

[32]  H. Pruppacher,et al.  A Numerical Investigation of Collision Efficiencies of Simple Ice Plates Colliding With Supercooled Water Drops , 1974 .

[33]  E. Williams,et al.  Density of rime in laboratory simulations of thunderstorm microphysics and electrification , 1996 .

[34]  Axel Seifert,et al.  McSnow: A Monte‐Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space , 2017 .

[35]  Andrew J. Heymsfield,et al.  A Comparative Study of the Rates of Development of Potential Graupel and Hail Embryos in High Plains Storms. , 1982 .

[36]  R. C. Ball,et al.  Universality in snowflake aggregation , 2003 .

[37]  M. Jacobson,et al.  Chemical retention during dry growth riming , 2004 .

[38]  T. Choularton,et al.  A model of the orographic enhancement of snowfall by the seeder‐feeder mechanism , 1986 .

[39]  S. Shima,et al.  The super‐droplet method for the numerical simulation of clouds and precipitation: a particle‐based and probabilistic microphysics model coupled with a non‐hydrostatic model , 2007, physics/0701103.

[40]  E. Barthazy,et al.  Fall velocity of snowflakes of different riming degree and crystal types , 2006 .

[41]  T. Harimaya,et al.  Measurement of the Riming Amount on Snowflakes , 1989 .