Depth Corrected Edge Detection of Magnetic Data

Most existing edge detection algorithms locate source edge through characteristic values, which are from potential derivatives, e.g., the tilt angle and the theta map locate the edge with zero value and the maximum value, respectively. In the present study, we state that the routine edge detections cannot delineate the accurate edge, especially for deep sources. We propose an idea for the edge detection using the depth correction, and suggest the depth corrected edge detection through the enhanced tilt angle to locate the deep source edge. The utility of depth corrected edge detection is demonstrated using a couple of model tests. Compared with existing methods, the depth corrected edge detection produces superior results by locating edges closer to the true edges, resulting in better interpretative images. In the application from a magnetic anomaly associated with a magnetite ore body from Qinghai Province in northwest China, most of the methods delineate the magnetite ore body’s area much larger than the actual one, while the proposed depth corrected edge detection delineate the magnetite ore body very close to the drill holes.

[2]  V. Barbosa,et al.  Edge detection of potential-field sources using scale-space monogenic signal: Fundamental principles , 2015 .

[3]  M. Mantovani,et al.  Geophysical analysis of Catalão I alkaline–carbonatite complex in Goiás, Brazil , 2016 .

[4]  Eun-Jung Holden,et al.  Improving assessment of geological structure interpretation of magnetic data: An advanced data analytics approach , 2016, Comput. Geosci..

[5]  Xiangzhi Zeng,et al.  Edge enhancement of potential field data using spectral moments , 2016 .

[6]  G. Cooper Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data , 2015 .

[7]  Depth Estimation for Magnetic/Gravity Anomaly Using Model Correction , 2017, Pure and Applied Geophysics.

[8]  Richard S. Smith,et al.  Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives , 2007 .

[9]  Chris Wijns,et al.  Theta map: Edge detection in magnetic data , 2005 .

[10]  Xiangyun Hu,et al.  NAV-Edge: Edge detection of potential-field sources using normalized anisotropy variance , 2014 .

[11]  Xiangyun Hu,et al.  Improved total magnetization direction determination by correlation of the normalized source strength derivative and the reduced-to-pole fields , 2018, GEOPHYSICS.

[12]  Maysam Abedi,et al.  Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran , 2016, Earth Science Informatics.

[13]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[14]  G. Cooper,et al.  Edge enhancement of potential-field data using normalized statistics , 2008 .

[15]  Richard S. Smith,et al.  Interpretation of magnetic data using tilt-angle derivatives , 2008 .

[16]  Opara,et al.  Structural and Tectonic Interpretations from Airborne Magnetic and Landsat ETM Data: A Case Study of Yola Arm of the Upper Benue Trough, Nigeria , 2016 .

[17]  Robert W. Simpson,et al.  Approximating edges of source bodies from magnetic or gravity anomalies , 1986 .

[18]  Ü. Dikmen,et al.  Edge enhancement of magnetic data using fractional-order-derivative filters , 2015 .

[20]  M. Pilkington,et al.  Practical considerations in the use of edge detectors for geologic mapping using magnetic data , 2017 .

[21]  P. Hood,et al.  THE DIPPING DIKE CASE: A COMPUTER CURVE‐MATCHING METHOD OF MAGNETIC INTERPRETATION , 1970 .

[22]  Vijay Singh,et al.  Potential field tilt—a new concept for location of potential field sources , 1994 .

[23]  E. Holden,et al.  Semiautomated quantification of the influence of data richness on confidence in the geologic interpretation of aeromagnetic maps , 2013 .

[24]  Madeline D. Lee,et al.  Quality assurance of aeromagnetic data using lineament analysis , 2013 .

[25]  G. Cooper,et al.  Determining the distance to magnetic sources , 2016 .