On the Use of Copulas in Hydrology: Theory and Practice

The use of copulas in hydrology is quite recent, and many important results still are to be discovered and/or derived. In this work we present some recent advances in hydrological modeling that exploit copulas. These include: (1) the calculation of conditional probabilities and their use in bivariate simulation; (2) the calculation of the level curves of joint distributions; (3) the calculation of the return periods of bivariate events, both in the conditional and unconditional cases; (4) the definition and calculation of the secondary return period; (5) a trivariate model for the temporal structure of the sequence of storms; (6) the statistical calculation of the storm depth; and (7) the calculation of the convolution variance. Several applications to hydrological data are shown. The models presented here may have important implications in many areas of water resources and hydrologic systems.

[1]  Dennis McLaughlin,et al.  Estimation of flood frequency: An evaluation of two derived distribution procedures , 1987 .

[2]  C. De Michele,et al.  Statistical characterization of temporal structure of storms , 2006 .

[3]  Gianfranco Becciu,et al.  Bivariate exponential model applied to intensities and durations of extreme rainfall , 1994 .

[4]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[5]  R. S. Kurothe,et al.  Derived flood frequency distribution for negatively correlated rainfall intensity and duration , 1997 .

[6]  Eric F. Wood,et al.  A derived flood frequency distribution using Horton Order Ratios , 1982 .

[7]  N. T. Kottegoda,et al.  Probability, Statistics, and Reliability for Civil and Environmental Engineers , 1997 .

[8]  Paul S. P. Cowpertwait A renewal cluster model for the inter-arrival times of rainfall events , 2001 .

[9]  Demetris Koutsoyiannis,et al.  A scaling model of a storm hyetograph , 1993 .

[10]  Ataur Rahman,et al.  Monte Carlo Simulation of Flood Frequency Curves from Rainfall , 2002 .

[11]  Eric F. Wood,et al.  An analysis of the effects of parameter uncertainty in deterministic hydrologic models , 1976 .

[12]  Peter F. Rasmussen,et al.  Bivariate frequency analysis: discussion of some useful concepts in hydrological application , 2002 .

[13]  Gianfausto Salvadori,et al.  Bivariate return periods via 2-Copulas , 2004 .

[14]  H. Joe Multivariate models and dependence concepts , 1998 .

[15]  Eric F. Wood,et al.  On Hydrologic Similarity: 1. Derivation of the Dimensionless Flood Frequency Curve , 1986 .

[16]  Taha B. M. J. Ouarda,et al.  The Gumbel mixed model for flood frequency analysis , 1999 .

[17]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Applications , 2002 .

[18]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[19]  Donald D. Gray,et al.  Antecedent Moisture Condition Probabilities , 1982 .

[20]  Juan B. Valdés,et al.  Estimation of flood frequencies for ungaged catchments , 1993 .

[21]  C. Michele,et al.  From generalized Pareto to extreme values law: Scaling properties and derived features , 2001 .

[22]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[23]  N. T. Kottegoda,et al.  Two-component log-normal distribution of irrigation-affected low flows , 1994 .

[24]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[25]  Richard M. Vogel,et al.  A derived flood frequency distribution for correlated rainfall intensity and duration. , 2000 .

[26]  C. De Michele,et al.  On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition , 2002 .

[27]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Theory , 2002, Insurance: Mathematics and Economics.

[28]  F. Charbonnier,et al.  The antecedent soil moisture condition of the curve number procedure , 2000 .

[29]  V. Iacobellis,et al.  Multiscaling pulse representation of temporal rainfall , 2002 .

[30]  Kenneth J. Koehler,et al.  A strategy for constructing multivariate distributions , 1995 .

[31]  Murugesu Sivapalan,et al.  Temporal scales and hydrological regimes: Implications for flood frequency scaling , 1997 .

[32]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[33]  R. Nelsen An Introduction to Copulas , 1998 .

[34]  Murugesu Sivapalan,et al.  Modeling of rainfall time series and extremes using bounded random cascades and levy‐stable distributions , 2000 .

[35]  Vijay P. Singh,et al.  Hydrologic Frequency Modeling , 1987 .

[36]  Demetris Koutsoyiannis,et al.  Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences , 2000 .

[37]  Murugesu Sivapalan,et al.  Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves , 1998 .

[38]  G. V. Loganathan,et al.  Effects of Urbanization on Frequencies of Overflows and Pollutant Loadings From Storm Sewer Overflows: A Derived Distribution Approach , 1984 .

[39]  H. Madsen,et al.  Regional estimation of rainfall intensity‐duration‐frequency curves using generalized least squares regression of partial duration series statistics , 2002 .

[40]  Peter S. Eagleson,et al.  Climatology of Station Storm Rainfall in the Continental United States: Parameters of the Bartlett-Lewis and Poisson Rectangular Pulses Models , 1992 .

[41]  G. Kuczera,et al.  Seasonal generalized exponential probability models with application to interstorm and storm durations , 1998 .

[42]  R. Carlson,et al.  A northern snowmelt‐flood frequency model , 1976 .

[43]  P. S. Eagleson Dynamics of flood frequency , 1972 .

[44]  Renzo Rosso,et al.  Extremes in Nature , 2007 .

[45]  Renzo Rosso,et al.  Bivariate Statistical Approach to Check Adequacy of Dam Spillway , 2005 .

[46]  Valerie Isham,et al.  Some models for rainfall based on stochastic point processes , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  Ignacio Rodriguez-Iturbe,et al.  On the probabilistic structure of storm surface runoff , 1985 .

[48]  Sheng Yue,et al.  The Gumbel logistic model for representing a multivariate storm event , 2000 .

[49]  V. Klemeš,et al.  Physically Based Stochastic Hydrologic Analysis , 1978 .

[50]  Jonathan R. M. Hosking,et al.  The effect of intersite dependence on regional flood frequency analysis , 1988 .

[51]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[52]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[53]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[54]  P. S. Eagleson Ecohydrology: Darwinian Expression of Vegetation Form and Function , 2002 .

[55]  J. Valdes,et al.  Nonparametric Approach for Estimating Return Periods of Droughts in Arid Regions , 2003 .

[56]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[57]  Rafael L. Bras,et al.  Urban Storm Water Management: Distribution of Flood Volumes , 1979 .

[58]  R. Bras,et al.  Physically based probabilistic models of infiltration, soil moisture, and actual evapotranspiration , 1981 .

[59]  Peter S. Eagleson,et al.  Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm sequences , 1978 .

[60]  Juan B. Valdés,et al.  A Physically Based Flood Frequency Distribution , 1984 .

[61]  C. De Michele,et al.  Analytical calculation of storm volume statistics involving Pareto‐like intensity‐duration marginals , 2004 .

[62]  Mark E. Johnson Multivariate Statistical Simulation: Johnson/Multivariate , 1987 .

[63]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .

[64]  M. J. Frank,et al.  Best-possible bounds for the distribution of a sum — a problem of Kolmogorov , 1987 .

[65]  François G. Schmitt,et al.  Modeling of rainfall time series using two-state renewal processes and multifractals , 1998 .

[66]  S. Yue,et al.  A review of bivariate gamma distributions for hydrological application , 2001 .

[67]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[68]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .