Enabling strain hardening simulations with dislocation dynamics

Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

[1]  Ladislas P. Kubin,et al.  Mesoscopic simulations of plastic deformation , 2001 .

[2]  Nasr M. Ghoniem,et al.  Fast-sum method for the elastic field of three-dimensional dislocation ensembles , 1999 .

[3]  K W Schwarz Local rules for approximating strong dislocation interactions in discrete dislocation dynamics , 2003 .

[4]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[5]  K. Schwarz,et al.  Modelling of dislocations intersecting a free surface , 2005 .

[6]  B. Devincre Meso-Scale Simulation of the Dislocation Dynamics , 1996 .

[7]  Marc Fivel,et al.  Implementing image stresses in a 3D dislocation simulation , 1996 .

[8]  C. Henager,et al.  Dislocation and stacking fault core fields in fcc metals , 2005 .

[9]  Vasily V. Bulatov,et al.  A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics , 2006 .

[10]  N. Ghoniem,et al.  Parametric dislocation dynamics of anisotropic crystals , 2003 .

[11]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[12]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[13]  K. Schwarz,et al.  Simulation of dislocations on the mesoscopic scale. I. Methods and examples , 1999 .

[14]  Vasily V. Bulatov,et al.  Dislocation stress fields for dynamic codes using anisotropic elasticity: methodology and analysis , 2001 .

[15]  van der Erik Giessen,et al.  Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics , 2002 .

[16]  Vasily V. Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[17]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[18]  Richard Alan Lesar,et al.  Multipole representation of the elastic field of dislocation ensembles , 2004 .

[19]  Ladislas P. Kubin,et al.  Dislocation Microstructures and Plastic Flow: A 3D Simulation , 1992 .

[20]  Sidney Yip,et al.  Periodic image effects in dislocation modelling , 2003 .

[21]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[22]  R. LeSar,et al.  Multipole expansion of dislocation interactions: Application to discrete dislocations , 2002 .

[23]  Tariq Khraishi,et al.  Free-Surface Effects in 3D Dislocation Dynamics: Formulation and Modeling , 2002 .

[24]  Ladislas P. Kubin,et al.  Mesoscopic simulations of dislocations and plasticity , 1997 .

[25]  Ladislas P. Kubin,et al.  Computer Simulation in Materials Science , 1991 .

[26]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[27]  D. Bacon,et al.  On the anisotropic elastic field of a dislocation segment in three dimensions , 1979 .

[28]  Phillips,et al.  Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals , 2000, Physical review letters.

[29]  Hussein M. Zbib,et al.  3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals , 2000 .

[30]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[31]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[32]  Hussein M. Zbib,et al.  Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals , 1998 .

[33]  Nasr M. Ghoniem,et al.  Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .